Early Diagnosis of Alzheimer's Disease Using 3D Residual Attention Network Based on Hippocampal Multi-indices Feature Fusion

被引:1
作者
Zhang, Yiyu [1 ]
Zheng, Qiang [1 ]
Zhao, Kun [2 ]
Li, Honglun [3 ,4 ]
Ma, Chaoqing [1 ]
Wu, Shuanhu [1 ]
Tong, Xiangrong [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264205, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn, Beijing, Peoples R China
[3] Qingdao Univ, Med Coll, Affiliated Yantai Yuhuangding Hosp, Dept Med Oncol, Yantai 264000, Peoples R China
[4] Qingdao Univ, Med Coll, Affiliated Yantai Yuhuangding Hosp, Dept Radiol, Yantai 264000, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION,, PT III | 2021年 / 13021卷
基金
中国国家自然科学基金;
关键词
Alzheimer's disease; Hippocampus; Multi-indices; Convolutional neural network; Classification; CLASSIFICATION; PERFORMANCE;
D O I
10.1007/978-3-030-88010-1_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is one of the most common causes of dementia in older individuals. Convergence evidence has confirmed that hippocampal atrophy is one of the most robust neuroimaging biomarkers of AD. However, most previous studies only independently consider the hippocampal volume or other morphological indicators, which cannot reflect the abnormal pattern of the hippocampus comprehensively and objectively. The primary aim of this study is to develop a classification model of AD based on a hippocampal multi-indices features fusion framework. The multi-indices features included 1) hippocampal gray volume block; 2) probability matrix obtained from the hippocampal segmentation; 3) hippocampal radiomics features. The 3D convolutional neural network based on the multi-indices feature fusion framework showed an ACC = 90.3% (AUC = 0.93) in classifying AD (N = 282) from NC (N = 603). The results suggested that the hippocampal multi-indices features are robust neuroimaging biomarkers in the early diagnosis of AD.
引用
收藏
页码:449 / 457
页数:9
相关论文
共 24 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[3]   STAGING OF ALZHEIMERS-DISEASE-RELATED NEUROFIBRILLARY CHANGES [J].
BRAAK, H ;
BRAAK, E .
NEUROBIOLOGY OF AGING, 1995, 16 (03) :271-278
[4]   Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures [J].
Cao, Peng ;
Liu, Xiaoli ;
Yang, Jinzhu ;
Zhao, Dazhe ;
Huang, Min ;
Zhang, Jian ;
Zaiane, Osmar .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 91 :21-37
[5]   Differential association of left and right hippocampal volumes with verbal episodic and spatial memory in older adults [J].
Ezzati, Ali ;
Katz, Mindy J. ;
Zammit, Andrea R. ;
Lipton, Michael L. ;
Zimmerman, Molly E. ;
Sliwinski, Martin J. ;
Lipton, Richard B. .
NEUROPSYCHOLOGIA, 2016, 93 :380-385
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   Bag of Tricks for Image Classification with Convolutional Neural Networks [J].
He, Tong ;
Zhang, Zhi ;
Zhang, Hang ;
Zhang, Zhongyue ;
Xie, Junyuan ;
Li, Mu .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :558-567
[8]   Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease [J].
Jin, Dan ;
Zhou, Bo ;
Han, Ying ;
Ren, Jiaji ;
Han, Tong ;
Liu, Bing ;
Lu, Jie ;
Song, Chengyuan ;
Wang, Pan ;
Wang, Dawei ;
Xu, Jian ;
Yang, Zhengyi ;
Yao, Hongxiang ;
Yu, Chunshui ;
Zhao, Kun ;
Wintermark, Max ;
Zuo, Nianming ;
Zhang, Xinqing ;
Zhou, Yuying ;
Zhang, Xi ;
Jiang, Tianzi ;
Wang, Qing ;
Liu, Yong .
ADVANCED SCIENCE, 2020, 7 (14)
[9]  
Jin D, 2019, I S BIOMED IMAGING, P1047, DOI 10.1109/ISBI.2019.8759455
[10]   Precuneus atrophy in early-onset Alzheimer's disease: A morphometric structural MRI study [J].
Karas, Giorgos ;
Scheltens, Philip ;
Rombouts, Serge ;
van Schijndel, Ronald ;
Klein, Martin ;
Jones, Bethany ;
van der Flier, Wiesje ;
Vrenken, Hugo ;
Barkhof, Frederik .
NEURORADIOLOGY, 2007, 49 (12) :967-976