Synthesis of quantum-confined CdS nanotubes

被引:10
|
作者
Mahapatra, A. K. [1 ]
机构
[1] Inst Phys, Bhubaneswar 751005, Orissa, India
关键词
CdS nanotube; Bubble; PL; Quantum confinement effect; Production; CHEMICAL BATH DEPOSITION; POLY(VINYL ALCOHOL); OPTICAL-PROPERTIES; GROWTH; NANOCRYSTALS; TEMPERATURE; ATTACHMENT; ENERGY;
D O I
10.1007/s11051-008-9438-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CdS nanotubes with wall thickness comparable to excitonic diameter of the bulk material are synthesized by a chemical route. A change in experimental conditions result in formation of nanowires, and well-separated nanoparticles. The diameter and wall thickness of nanotubes measured to be 14.4 +/- A A 6.1 and 4.7 +/- A 2.2 nm, respectively. A large number of CdS nanocrystallites having wurzite structure constitute these nanotubes. These nanotubes show high energy shifting of optical absorption and photoluminescence peak positions, compared to its bulk value, due to quantum confinement effect. It is proposed that nucleation and growth of bubbles and particles in the chemical reaction, and their kinetics and interactions are responsible for the formation of nanotubes.
引用
收藏
页码:467 / 475
页数:9
相关论文
共 50 条
  • [41] THz quantum-confined Stark effect in semiconductor quantum dots
    Turchinovich, Dmitry
    Monozon, Boris S.
    Livshits, Daniil A.
    Rafailov, Edik U.
    Hoffmann, Matthias C.
    ULTRAFAST PHENOMENA AND NANOPHOTONICS XVI, 2012, 8260
  • [42] Quantum-confined Stark effects in a single GaN quantum dot
    Liu Yong-Hui
    Wang Xue-Feng
    Li Shu-Shen
    CHINESE PHYSICS LETTERS, 2008, 25 (07) : 2628 - 2630
  • [43] Quantum-confined stark effects in a single GaN quantum dot
    State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
    Chin. Phys. Lett., 2008, 7 (2628-2630):
  • [44] Terahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials
    Ren, Lei
    Zhang, Qi
    Nanot, Sebastien
    Kawayama, Iwao
    Tonouchi, Masayoshi
    Kono, Junichiro
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2012, 33 (08) : 846 - 860
  • [45] Quantum-confined strain gradient effect in semiconductor nanomembranes
    Binder, R.
    Gu, B.
    Kwong, N. H.
    PHYSICAL REVIEW B, 2014, 90 (19):
  • [46] OBSERVATION OF QUANTUM-CONFINED ELECTRON-HOLE DROPLETS
    KALT, H
    NOTZEL, R
    PLOOG, K
    GIESSEN, H
    SOLID STATE COMMUNICATIONS, 1992, 83 (04) : 285 - 288
  • [47] Quantum-confined ion superfluid in nerve signal transmission
    Xiqi Zhang
    Lei Jiang
    Nano Research, 2019, 12 : 1219 - 1221
  • [49] Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si
    Rong, Yiwen
    Ge, Yangsi
    Huo, Yijie
    Fiorentino, Marco
    Tan, Michael R. T.
    Kamins, Theodore I.
    Ochalski, Tomasz J.
    Huyet, Guillaume
    Harris, James S., Jr.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (01) : 85 - 92
  • [50] CALCULATION OF THE ELECTRONIC-PROPERTIES OF QUANTUM-CONFINED SEMICONDUCTORS
    HILL, NA
    WHALEY, KB
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 6 - PHYS