Synthesis of quantum-confined CdS nanotubes

被引:10
|
作者
Mahapatra, A. K. [1 ]
机构
[1] Inst Phys, Bhubaneswar 751005, Orissa, India
关键词
CdS nanotube; Bubble; PL; Quantum confinement effect; Production; CHEMICAL BATH DEPOSITION; POLY(VINYL ALCOHOL); OPTICAL-PROPERTIES; GROWTH; NANOCRYSTALS; TEMPERATURE; ATTACHMENT; ENERGY;
D O I
10.1007/s11051-008-9438-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CdS nanotubes with wall thickness comparable to excitonic diameter of the bulk material are synthesized by a chemical route. A change in experimental conditions result in formation of nanowires, and well-separated nanoparticles. The diameter and wall thickness of nanotubes measured to be 14.4 +/- A A 6.1 and 4.7 +/- A 2.2 nm, respectively. A large number of CdS nanocrystallites having wurzite structure constitute these nanotubes. These nanotubes show high energy shifting of optical absorption and photoluminescence peak positions, compared to its bulk value, due to quantum confinement effect. It is proposed that nucleation and growth of bubbles and particles in the chemical reaction, and their kinetics and interactions are responsible for the formation of nanotubes.
引用
收藏
页码:467 / 475
页数:9
相关论文
共 50 条
  • [31] MEASURING THE PROBABILITY DENSITY OF QUANTUM-CONFINED STATES
    BETON, PH
    WANG, J
    MORI, N
    EAVES, L
    MAIN, PC
    FOSTER, TJ
    HENINI, M
    PHYSICAL REVIEW LETTERS, 1995, 75 (10) : 1996 - 1999
  • [32] Advances in Quantum-Confined Perovskite Nanocrystals for Optoelectronics
    Polavarapu, Lakshminarayana
    Nickel, Bert
    Feldmann, Jochen
    Urban, Alexander S.
    ADVANCED ENERGY MATERIALS, 2017, 7 (16)
  • [33] QUANTUM-CONFINED ELECTRON-HOLE DROPLETS
    KALT, H
    NOTZEL, R
    PLOOG, K
    GIESSEN, H
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 173 (01): : 389 - 396
  • [34] RESONANT MAGNETOTUNNELING VIA QUANTUM-CONFINED STATES
    BETON, PH
    WANG, J
    MORI, N
    EAVES, L
    BUHMANN, H
    MANSOURI, L
    MAIN, PC
    FOSTER, TJ
    HENINI, M
    PHYSICA B, 1995, 211 (1-4): : 423 - 429
  • [35] Excitonic contributions to the quantum-confined Pockels effect
    Toropov, AA
    Ivchenko, EL
    Krebs, O
    Cortez, S
    Voisin, P
    Gentner, JL
    PHYSICAL REVIEW B, 2001, 63 (03) : 353021 - 353028
  • [36] The Changing Colors of a Quantum-Confined Topological Insulator
    Vargas, Anthony
    Basak, Susmita
    Liu, Fangze
    Wang, Baokai
    Panaitescu, Eugen
    Lin, Hsin
    Markiewicz, Robert
    Bansil, Arun
    Kar, Swastik
    ACS NANO, 2014, 8 (02) : 1222 - 1230
  • [37] Optoelectronic properties in quantum-confined germanium dots
    Scarselli, M.
    Masala, S.
    Castrucci, P.
    De Crescenzi, M.
    Gatto, E.
    Venanzi, M.
    Karmous, A.
    Szkutnik, P. D.
    Ronda, A.
    Berbezier, I.
    APPLIED PHYSICS LETTERS, 2007, 91 (14)
  • [38] Quantum-confined Stark effects in interdiffused semiconductor quantum dots
    Wang, Yang
    Negro, David
    Djie, Hery S.
    Ooi, Boon S.
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XV, 2007, 6468
  • [39] Synthesis and Spectroscopy of Monodispersed, Quantum-Confined FAPbBr3 Perovskite Nanocrystals
    Li, Yulu
    Ding, Tao
    Luo, Xiao
    Tian, Yuyang
    Lu, Xin
    Wu, Kaifeng
    CHEMISTRY OF MATERIALS, 2020, 32 (01) : 549 - 556
  • [40] Quantum-confined superfluid: From nature to artificial
    Wen, Liping
    Zhang, Xiqi
    Tian, Ye
    Jiang, Lei
    SCIENCE CHINA-MATERIALS, 2018, 61 (08) : 1027 - 1032