Synthesis of quantum-confined CdS nanotubes

被引:10
|
作者
Mahapatra, A. K. [1 ]
机构
[1] Inst Phys, Bhubaneswar 751005, Orissa, India
关键词
CdS nanotube; Bubble; PL; Quantum confinement effect; Production; CHEMICAL BATH DEPOSITION; POLY(VINYL ALCOHOL); OPTICAL-PROPERTIES; GROWTH; NANOCRYSTALS; TEMPERATURE; ATTACHMENT; ENERGY;
D O I
10.1007/s11051-008-9438-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CdS nanotubes with wall thickness comparable to excitonic diameter of the bulk material are synthesized by a chemical route. A change in experimental conditions result in formation of nanowires, and well-separated nanoparticles. The diameter and wall thickness of nanotubes measured to be 14.4 +/- A A 6.1 and 4.7 +/- A 2.2 nm, respectively. A large number of CdS nanocrystallites having wurzite structure constitute these nanotubes. These nanotubes show high energy shifting of optical absorption and photoluminescence peak positions, compared to its bulk value, due to quantum confinement effect. It is proposed that nucleation and growth of bubbles and particles in the chemical reaction, and their kinetics and interactions are responsible for the formation of nanotubes.
引用
收藏
页码:467 / 475
页数:9
相关论文
共 50 条
  • [21] QUANTUM-CONFINED STARK EFFECTS IN SEMICONDUCTOR QUANTUM DOTS
    WEN, GW
    LIN, JY
    JIANG, HX
    CHEN, Z
    PHYSICAL REVIEW B, 1995, 52 (08): : 5913 - 5922
  • [22] Optics of colloidal quantum-confined CdSe quantum nanoscrolls
    Vasiliev, R. B.
    Sokolikova, M. S.
    Vitukhnovskii, A. G.
    Ambrozevich, S. A.
    Selyukov, A. S.
    Lebedev, V. S.
    QUANTUM ELECTRONICS, 2015, 45 (09) : 853 - 857
  • [23] Quantum-confined stark effects in semiconductor quantum disks
    Susa, N
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (10) : 1760 - 1766
  • [24] QUANTUM-CONFINED LORENTZ EFFECT IN A QUANTUM-WIRE
    BALANDIN, A
    BANDYOPADHYAY, S
    JOURNAL OF APPLIED PHYSICS, 1995, 77 (11) : 5924 - 5928
  • [25] Quantum-confined Stark effect in interdiffused quantum dots
    Wang, Y.
    Djie, H. S.
    Ooi, B. S.
    APPLIED PHYSICS LETTERS, 2006, 89 (15)
  • [26] Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41 as a visible light photocatalyst
    Shaohua Shen
    Liejin Guo
    MATERIALS RESEARCH BULLETIN, 2008, 43 (02) : 437 - 446
  • [27] Tunable Spin Gaps in a Quantum-Confined Geometry
    Frantzeskakis, Emmanouil
    Pons, Stephane
    Mirhosseini, Hossein
    Henk, Juergen
    Ast, Christian R.
    Grioni, Marco
    PHYSICAL REVIEW LETTERS, 2008, 101 (19)
  • [28] Orbital photogalvanic effects in quantum-confined structures
    Karch, J.
    Tarasenko, S. A.
    Olbrich, P.
    Schoenberger, T.
    Reitmaier, C.
    Plohmann, D.
    Kvon, Z. D.
    Ganichev, S. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (35)
  • [29] Synthesis and Properties of Strongly Quantum-Confined Cesium Lead Halide Perovskite Nanocrystals
    Qiao, Tian
    Son, Dong Hee
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (06) : 1399 - 1408
  • [30] Electrodeposition of quantum-confined metal semiconductor nanocomposites
    Switzer, JA
    Hung, CJ
    Bohannan, EW
    Shumsky, MG
    Golden, TD
    VanAken, DC
    ADVANCED MATERIALS, 1997, 9 (04) : 334 - &