Semiclassical analysis of edge state energies in the integer quantum Hall effect

被引:9
作者
Avishai, Y. [1 ,2 ,3 ,4 ]
Montambaux, G. [5 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Ilse Katz Ctr Nanotechnol, IL-84105 Beer Sheva, Israel
[3] RTRA Triangle Phys, F-91190 Les Algorithmes, Saint Aubin, France
[4] CEA Saclay, CNRS URA 2306, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[5] Ctr Univ Paris Sud, CNRS UMR 8502, Phys Solides Lab, F-91405 Orsay, France
关键词
D O I
10.1140/epjb/e2008-00404-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Analysis of edge-state energies in the integer quantum Hall effect is carried out within the semiclassical approximation. When the system is wide so that each edge can be considered separately, this problem is equivalent to that of a one dimensional harmonic oscillator centered at x = x(c) and an infinite wall at x = 0, and appears in numerous physical contexts. The eigenvalues E-n(x(c)) for a given quantum number n are solutions of the equation S( E, x(c)) = pi[n + gamma(E, x(c))] where S is the WKB action and 0 < gamma < 1 encodes all the information on the connection procedure at the turning points. A careful implication of the WKB connection formulae results in an excellent approximation to the exact energy eigenvalues. The dependence of gamma[En(x(c)), x(c)] equivalent to gamma(n)(x(c)) on x(c) is analyzed between its two extreme values 1/2 as x(c) -> -infinity far inside the sample and 3/4 as x(c) -> infinity far outside the sample. The edge-state energies E-n(x(c)) obey an almost exact scaling law of the form E-n(x(c)) = 4[n + gamma(n)(x(c))]f (x(c)/root 4n+3) and the scaling function f(y) is explicitly elucidated.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
[21]   Imaging of edge channels in the integer quantum Hall regime by the lateral photoelectric effect [J].
vanHaren, RJF ;
Blom, FAP ;
deLange, W ;
Wolter, JH .
SURFACE SCIENCE, 1996, 361 (1-3) :267-269
[22]   Imaging of edge channels in the integer quantum Hall regime by the lateral photoelectric effect [J].
vanHaren, RJF ;
deLange, W ;
Blom, FAP ;
Wolter, JH .
PHYSICA B, 1996, 227 (1-4) :186-188
[23]   Edge states and integer quantum Hall effect in topological insulator thin films [J].
Zhang, Song-Bo ;
Lu, Hai-Zhou ;
Shen, Shun-Qing .
SCIENTIFIC REPORTS, 2015, 5
[24]   IMAGING OF EDGE CHANNELS IN THE INTEGER QUANTUM HALL REGIME BY THE LATERAL PHOTOELECTRIC EFFECT [J].
VANHAREN, RJF ;
DELANGE, W ;
BLOM, FAP ;
WOLTER, JH .
PHYSICAL REVIEW B, 1995, 52 (08) :5760-5766
[25]   Quantum graphs and the integer quantum Hall effect [J].
Goldman, N. ;
Gaspard, P. .
PHYSICAL REVIEW B, 2008, 77 (02)
[26]   Electron interferometry in integer quantum Hall edge channels [J].
Rech, J. ;
Wahl, C. ;
Jonckheere, T. ;
Martin, T. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[27]   Relaxation in Driven Integer Quantum Hall Edge States [J].
Kovrizhin, D. L. ;
Chalker, J. T. .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)
[28]   Fractional edge reconstruction in integer quantum Hall phases [J].
Khanna, Udit ;
Goldstein, Moshe ;
Gefen, Yuval .
PHYSICAL REVIEW B, 2021, 103 (12)
[29]   Relaxation and edge reconstruction in integer quantum Hall systems [J].
Karzig, Torsten ;
Levchenko, Alex ;
Glazman, Leonid I. ;
von Oppen, Felix .
NEW JOURNAL OF PHYSICS, 2012, 14
[30]   Imaging of integer quantum Hall edge state in a quantum point contact via scanning gate microscopy [J].
Aoki, N ;
da Cunha, CR ;
Akis, R ;
Ferry, DK ;
Ochiai, Y .
PHYSICAL REVIEW B, 2005, 72 (15)