Measuring input synchrony in the Omstein-Uhlenbeck neuronal model through input parameter estimation

被引:2
|
作者
Koutsou, Achilleas [1 ]
Kanev, Jacob [2 ]
Christodoulou, Chris [1 ]
机构
[1] Univ Cyprus, Dept Comp Sci, CY-1678 Nicosia, Cyprus
[2] Tech Univ Berlin, Dept Elect Engn & Comp Sci, Berlin, Germany
关键词
Ornstein-Uhlenbeck neuronal model; Measuring input synchrony; Input parameter estimation; STOCHASTIC RESONANCE; NEURAL-NETWORKS; NOISE; PROPAGATION; INTEGRATION; INFORMATION; SPIKING;
D O I
10.1016/j.brainres.2013.05.012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present a method of estimating the input parameters and through them, the input synchrony, of a stochastic leaky integrate-and-fire neuronal model based on the Omstein-Uhlenbeck process when it is driven by time-dependent sinusoidal input signal and noise. By driving the neuron using sinusoidal inputs, we simulate the effects of periodic synchrony on the membrane voltage and the firing of the neuron, where the peaks of the sine wave represent volleys of synchronised input spikes. Our estimation methods allow us to measure the degree of synchrony driving the neuron in terms of the input sine wave parameters, using the output spikes of the model and the membrane potential. In particular, by estimating the frequency of the synchronous input volleys and averaging the estimates of the level of input activity at corresponding intervals of the input signal, we obtain fairly accurate estimates of the baseline and peak activity of the input, which in turn define the degrees of synchrony. The same procedure is also successfully applied in estimating the baseline and peak activity of the noise. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 19 条
  • [1] Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals
    Buonocore, A.
    Caputo, L.
    Nobile, A. G.
    Pirozzi, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 285 : 59 - 71
  • [2] Estimation of Time-Dependent Input from Neuronal Membrane Potential
    Kobayashi, Ryota
    Shinomoto, Shigeru
    Lansky, Petr
    NEURAL COMPUTATION, 2011, 23 (12) : 3070 - 3093
  • [3] Rate-synchrony relationship between input and output of spike trains in neuronal networks
    Wang, Sentao
    Zhou, Changsong
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [4] Spike synchrony generated by modulatory common input through NMDA-type synapses
    Wagatsuma, Nobuhiko
    von der Heydt, Ruediger
    Niebur, Ernst
    JOURNAL OF NEUROPHYSIOLOGY, 2016, 116 (03) : 1418 - 1433
  • [5] How synaptic strength, short-term plasticity, and input synchrony contribute to neuronal spike output
    Buchholz, Moritz S.
    Gastone Guilabert, Alexandra
    Ehret, Benjamin S.
    Schuhknecht, Gregor F. P.
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (04)
  • [6] Bayesian optimal sensor placement for parameter estimation under modeling and input uncertainties
    Ercan, Tulay
    Papadimitriou, Costas
    JOURNAL OF SOUND AND VIBRATION, 2023, 563
  • [7] Robust unknown input observer design for state estimation and fault detection using linear parameter varying model
    Li, Shanzhi
    Wang, Haoping
    Aitouche, Abdel
    Tian, Yang
    Christov, Nicolai
    13TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2016), 2017, 783
  • [8] Two recursive least squares parameter estimation algorithms for multirate multiple-input systems by using the auxiliary model
    Han, Lili
    Wu, Fangxiang
    Sheng, Jie
    Ding, Feng
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (05) : 777 - 789
  • [9] Modified firing-rate model reproduces synchronization of a neuronal population receiving complex input
    Buchin A.J.
    Chizhov A.V.
    Optical Memory and Neural Networks (Information Optics), 2010, 19 (02): : 166 - 171
  • [10] Nonlinear neural network for hemodynamic model state and input estimation using fMRI data
    Karam, Ayman M.
    Laleg-Kirati, Taous Meriem
    Zayane, Chadia
    Kashou, Nasser H.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 14 : 240 - 247