A multinumerics scheme for incompressible two-phase flow

被引:6
作者
Doyle, Bryan [1 ]
Riviere, Beatrice [1 ]
Sekachev, Michael [2 ]
机构
[1] Rice Univ, 6100 Main St, Houston, TX 77005 USA
[2] Total, 1201 Louisiana St, Houston, TX 77002 USA
基金
美国国家科学基金会;
关键词
Fully implicit; Two-phase; Discontinuous Galerkin; Finite volume; Heterogeneities; DISCONTINUOUS GALERKIN METHOD; GENERIC GRID INTERFACE; POROUS-MEDIA; DIFFUSION-EQUATIONS; ELEMENT-METHOD; PARALLEL;
D O I
10.1016/j.cma.2020.113213
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The incompressible two-phase flow problem is solved by a method that combines cell-centered finite volume with discontinuous Galerkin in non-overlapping subdomains. The primary unknowns are the wetting phase pressure and the capillary pressure. The nonlinear equations are solved fully implicitly at each time step. Fluxes at the interface between subdomains are defined implicitly to allow for seamless propagation of saturation fronts. Numerical results show the robustness and efficiency of the method for homogeneous and heterogeneous porous media. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 32 条
[1]   A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocityand continuous capillary pressure [J].
Arbogast, Todd ;
Juntunen, Mika ;
Pool, Jamie ;
Wheeler, Mary F. .
COMPUTATIONAL GEOSCIENCES, 2013, 17 (06) :1055-1078
[2]  
Aziz K., 1979, Petroleum Reservoir Simulation
[3]   A generic grid interface for parallel and adaptive scientific computing.: Part II:: implementation and tests in DUNE [J].
Bastian, P. ;
Blatt, M. ;
Dedner, A. ;
Engwer, C. ;
Kloefkorn, R. ;
Kornhuber, R. ;
Ohlberger, M. ;
Sander, O. .
COMPUTING, 2008, 82 (2-3) :121-138
[4]   A generic grid interface for parallel and adaptive scientific computing.: Part I:: abstract framework [J].
Bastian, P. ;
Blatt, M. ;
Dedner, A. ;
Engwer, C. ;
Kloefkorn, R. ;
Ohlberger, M. ;
Sander, O. .
COMPUTING, 2008, 82 (2-3) :103-119
[5]   Superconvergence and H(div) projection for discontinuous Galerkin methods [J].
Bastian, P ;
Rivière, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (10) :1043-1057
[6]   A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure [J].
Bastian, Peter .
COMPUTATIONAL GEOSCIENCES, 2014, 18 (05) :779-796
[7]  
Blatt M., 2016, ARCHIVE NUMERICAL SO, V4, P13, DOI [DOI 10.11588/ANS.2016.100.26526, 10.11588/ans.2016.100.26526]
[8]   On the generic parallelisation of iterative solvers for the finite element method [J].
Blatt, Markus ;
Bastian, Peter .
INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2008, 4 (01) :56-69
[9]  
Brooks R.H., 1964, HYDRAULIC PROPERTIES, P24
[10]  
[陈至立 CHEN Zhili], 2006, [中国软科学, China Soft Science], P1