Maximum distance separable convolutional codes

被引:117
作者
Rosenthal, J [1 ]
Smarandache, R [1 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
convolutional codes; MDS block codes;
D O I
10.1007/s002000050120
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A maximum distance separable (MDS) block code is a linear code whose distance is maximal among all linear block codes of rate kin. It is well known that MDS block codes do exist if the field size is more than n. In this paper we generalize this concept to the class of convolutional codes of a fixed rate k/n and a fixed code degree delta. In order to achieve, this result we will introduce a natural upper bound for the free distance generalizing the Singleton bound. The main result of the paper shows that this upper bound can be achieved in all cases if one allows sufficiently many field elements.
引用
收藏
页码:15 / 32
页数:18
相关论文
共 20 条
[1]   CONVOLUTIONAL CODES .1. ALGEBRAIC STRUCTURE [J].
FORNEY, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (06) :720-+
[2]  
Fulton W., 1969, ALGEBRAIC CURVES
[3]  
JOHANNESSON R, 1989, LECT NOTES CONTROL I, V128, P109
[4]  
Johannesson R., 1999, FUNDAMENTALS CONVOLU
[5]   MAXIMUM-DISTANCE-SEPARABLE CONVOLUTIONAL CODES [J].
JUSTESEN, J ;
HUGHES, LR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :288-288
[6]   ALGEBRAIC CONSTRUCTION OF RATE 1-V CONVOLUTIONAL CODES [J].
JUSTESEN, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (05) :577-580
[7]  
KUIJPER M, 1994, 1 ORDER REPRESENTATI
[8]  
LOMADZE VG, 1990, ACTA APPL MATH, V19, P149
[9]  
Mac Williams F., 1977, THEORY ERROR CORRECT
[10]  
MCELICE RJ, 1998, HDB CODING THEORY