Predicting the Suitable Geographical Distribution ofSinadoxa Corydalifoliaunder Different Climate Change Scenarios in the Three-River Region Using the MaxEnt Model

被引:27
作者
Huang, Xiaotao [1 ,2 ,3 ]
Ma, Li [1 ,2 ,3 ]
Chen, Chunbo [2 ,4 ]
Zhou, Huakun [1 ,2 ,3 ]
Yao, Buqing [1 ,2 ]
Ma, Zhen [1 ,2 ]
机构
[1] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Restorat Ecol Cold Reg Lab Qinghai, Xining 810008, Peoples R China
[2] Chinese Acad Sci, Key Lab Adaptat & Evolut Plateau Biota, Xining 810008, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
来源
PLANTS-BASEL | 2020年 / 9卷 / 08期
关键词
suitable distribution; MaxEnt; three-river region; climate change; environmental variable; POTENTIAL DISTRIBUTION; HEADWATERS REGION; TIBETAN PLATEAU; DISTRIBUTION PATTERN; CHINA;
D O I
10.3390/plants9081015
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sinadoxa corydalifoliais a perennial grass with considerable academic value as a rare species owing to habitat destruction and a narrow distribution. However, its distribution remains unclear. In this study, we predicted the distribution ofSinadoxa corydalifoliain the three-river region (the source of the Yangtze River, Yellow River, and Lancang River) under the context of climate change using the maximum entropy (MaxEnt) model. Under the current climate scenario, the suitable distribution mainly occurred in Yushu County and Nangqian County. The suitable distribution area ofSinadoxa corydalifoliacovered 3107 km(2), accounting for 0.57% of the three-river region. The mean diurnal air temperature range (Bio2), temperature seasonality (Bio4), and mean air temperature of the driest quarter (Bio9) contributed the most to the distribution model forSinadoxa corydalifolia, with a cumulative contribution of 81.4%. The highest suitability occurred when air temperature seasonality (Bio4) ranged from 6500 to 6900. The highest suitable mean air temperature of the driest quarter ranged from -5 to 0 degrees C. The highest suitable mean diurnal temperature (Bio2) ranged from 8.9 to 9.7 degrees C. In future (2041-2060) scenarios, the suitable distribution areas ofSinadoxa corydalifoliafrom high to low are as follows: representative concentration pathway (RCP)26 (6171 km(2)) > RCP45 (6017 km(2)) > RCP80 (4238 km(2)) > RCP60 (2505 km(2)). In future (2061-2080) scenarios, the suitable distribution areas ofSinadoxa corydalifoliafrom high to low are as follows: RCP26 (18,299 km(2)) > RCP60 (11,977 km(2)) > RCP45 (10,354 km(2)) > RCP80 (7539 km(2)). In general, the suitable distribution will increase in the future. The distribution area ofSinadoxa corydalifoliawill generally be larger under low CO(2)concentrations than under high CO(2)concentrations. This study will facilitate the development of appropriate conservation measures forSinadoxa corydalifoliain the three-river region.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 53 条
[1]   Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crep. in Egypt [J].
Abdelaal, Mohamed ;
Fois, Mauro ;
Fenu, Giuseppe ;
Bacchetta, Gianluigi .
ECOLOGICAL INFORMATICS, 2019, 50 :68-75
[2]   Untangling drivers of species distributions: Global sensitivity and uncertainty analyses of MAXENT [J].
Convertino, M. ;
Munoz-Carpena, R. ;
Chu-Agor, M. L. ;
Kiker, G. A. ;
Linkov, I. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 51 :296-309
[3]   Detecting fingerprints of landslide drivers: A MaxEnt model [J].
Convertino, M. ;
Troccoli, A. ;
Catani, F. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2013, 118 (03) :1367-1386
[4]   Responses of soil moisture to regional climate change over the Three Rivers Source Region on the Tibetan Plateau [J].
Deng, Mingshan ;
Meng, Xianhong ;
Li, Zhaoguo ;
Lyv, Yaqiong ;
Lei, Huajin ;
Zhao, Lin ;
Zhao, Shengnan ;
Ge, Jun ;
Jing, Hui .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2020, 40 (04) :2403-2417
[5]   Maxent estimation of aquatic Escherichia coli stream impairment [J].
Gilfillan, Dennis ;
Joyner, Timothy A. ;
Scheuerman, Phillip .
PEERJ, 2018, 6
[6]   How important are choice of model selection method and spatial autocorrelation of presence data. for distribution modelling by MaxEnt? [J].
Halvorsen, Rune ;
Mazzoni, Sabrina ;
Dirksen, John Wirkola ;
Naesset, Erik ;
Gobakken, Terje ;
Ohlson, Mikael .
ECOLOGICAL MODELLING, 2016, 328 :108-118
[7]   Grassland ecosystem responses to climate change and human activities within the Three-River Headwaters region of China [J].
Han, Ze ;
Song, Wei ;
Deng, Xiangzheng ;
Xu, Xinliang .
SCIENTIFIC REPORTS, 2018, 8
[8]   The influence of climatic changes on distribution pattern of six typical Kobresia species in Tibetan Plateau based on MaxEnt model and geographic information system [J].
Hu, Zhongjun ;
Guo, Ke ;
Jin, Shulan ;
Pan, Huahua .
THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 135 (1-2) :375-390
[9]   The expanding distribution of the Indian Peafowl (Pavo cristatus) as an indicator of changing climate in Kerala, southern India: A modelling study using MaxEnt [J].
Jose, Sanjo ;
Nameer, P. O. .
ECOLOGICAL INDICATORS, 2020, 110 (110)
[10]   Data Descriptor: Climatologies at high resolution for the earth's land surface areas [J].
Karger, Dirk Nikolaus ;
Conrad, Olaf ;
Boehner, Juergen ;
Kawohl, Tobias ;
Kreft, Holger ;
Soria-Auza, Rodrigo Wilber ;
Zimmermann, Niklaus E. ;
Linder, H. Peter ;
Kessler, Michael .
SCIENTIFIC DATA, 2017, 4