Learning properties of ordered and disordered materials from multi-fidelity data

被引:145
作者
Chen, Chi [1 ]
Zuo, Yunxing [1 ]
Ye, Weike [1 ]
Li, Xiangguo [1 ]
Ong, Shyue Ping [1 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, San Diego, CA 92103 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
BAND-GAP; APPROXIMATIONS; PERFORMANCE; MODELS;
D O I
10.1038/s43588-020-00002-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Predicting the properties of a material from the arrangement of its atoms is a fundamental goal in materials science. While machine learning has emerged in recent years as a new paradigm to provide rapid predictions of materials properties, their practical utility is limited by the scarcity of high-fidelity data. Here, we develop multi-fidelity graph networks as a universal approach to achieve accurate predictions of materials properties with small data sizes. As a proof of concept, we show that the inclusion of low-fidelity Perdew-Burke-Ernzerhof band gaps greatly enhances the resolution of latent structural features in materials graphs, leading to a 22-45% decrease in the mean absolute errors of experimental band gap predictions. We further demonstrate that learned elemental embeddings in materials graph networks provide a natural approach to model disorder in materials, addressing a fundamental gap in the computational prediction of materials properties.
引用
收藏
页码:46 / +
页数:12
相关论文
共 48 条
[41]   A high-performance cathode for the next generation of solid-oxide fuel cells [J].
Shao, ZP ;
Haile, SM .
NATURE, 2004, 431 (7005) :170-173
[42]   Strongly Constrained and Appropriately Normed Semilocal Density Functional [J].
Sun, Jianwei ;
Ruzsinszky, Adrienn ;
Perdew, John P. .
PHYSICAL REVIEW LETTERS, 2015, 115 (03)
[43]  
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
[44]   Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties [J].
Xie, Tian ;
Grossman, Jeffrey C. .
PHYSICAL REVIEW LETTERS, 2018, 120 (14)
[45]   Boosting Quantum Machine Learning Models with a Multilevel Combination Technique: Pople Diagrams Revisited [J].
Zaspel, Peter ;
Huang, Bing ;
Harbrecht, Helmut ;
von Lilienfeld, O. Anatole .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (03) :1546-1559
[46]   Efficient first-principles prediction of solid stability: Towards chemical accuracy [J].
Zhang, Yubo ;
Kitchaev, Daniil A. ;
Yang, Julia ;
Chen, Tina ;
Dacek, Stephen T. ;
Sarmiento-Perez, Rafael A. ;
Marques, Maguel A. L. ;
Peng, Haowei ;
Ceder, Gerbrand ;
Perdew, John P. ;
Sun, Jianwei .
NPJ COMPUTATIONAL MATERIALS, 2018, 4
[47]   Predicting the Band Gaps of Inorganic Solids by Machine Learning [J].
Zhuo, Ya ;
Tehrani, Aria Mansouri ;
Brgoch, Jakoah .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (07) :1668-1673
[48]   Performance and Cost Assessment of Machine Learning Interatomic Potentials [J].
Zuo, Yunxing ;
Chen, Chi ;
Li, Xiangguo ;
Deng, Zhi ;
Chen, Yiming ;
Behler, Joerg ;
Csanyi, Gabor ;
Shapeev, Alexander, V ;
Thompson, Aidan P. ;
Wood, Mitchell A. ;
Ong, Shyue Ping .
JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (04) :731-745