Learning properties of ordered and disordered materials from multi-fidelity data

被引:145
作者
Chen, Chi [1 ]
Zuo, Yunxing [1 ]
Ye, Weike [1 ]
Li, Xiangguo [1 ]
Ong, Shyue Ping [1 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, San Diego, CA 92103 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
BAND-GAP; APPROXIMATIONS; PERFORMANCE; MODELS;
D O I
10.1038/s43588-020-00002-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Predicting the properties of a material from the arrangement of its atoms is a fundamental goal in materials science. While machine learning has emerged in recent years as a new paradigm to provide rapid predictions of materials properties, their practical utility is limited by the scarcity of high-fidelity data. Here, we develop multi-fidelity graph networks as a universal approach to achieve accurate predictions of materials properties with small data sizes. As a proof of concept, we show that the inclusion of low-fidelity Perdew-Burke-Ernzerhof band gaps greatly enhances the resolution of latent structural features in materials graphs, leading to a 22-45% decrease in the mean absolute errors of experimental band gap predictions. We further demonstrate that learned elemental embeddings in materials graph networks provide a natural approach to model disorder in materials, addressing a fundamental gap in the computational prediction of materials properties.
引用
收藏
页码:46 / +
页数:12
相关论文
共 48 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[3]   Multifidelity Information Fusion with Machine Learning: A Case Study of Dopant Formation Energies in Hafnia [J].
Batra, Rohit ;
Pilania, Ghanshyam ;
Uberuaga, Blas P. ;
Ramprasad, Rampi .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (28) :24906-24918
[4]  
Battaglia Peter W, 2018, Relational inductive biases, deep learning, and graph networks
[5]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[6]   Large-Scale Benchmark of Exchange-Correlation Functionals for the Determination of Electronic Band Gaps of Solids [J].
Borlido, Pedro ;
Aull, Thorsten ;
Huran, Ahmad W. ;
Tran, Fabien ;
Marques, Miguel A. L. ;
Botti, Silvana .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (09) :5069-5079
[7]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[8]   New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations [J].
Castelli, Ivano E. ;
Huser, Falco ;
Pandey, Mohnish ;
Li, Hong ;
Thygesen, Kristian S. ;
Seger, Brian ;
Jain, Anubhav ;
Persson, Kristin A. ;
Ceder, Gerbrand ;
Jacobsen, Karsten W. .
ADVANCED ENERGY MATERIALS, 2015, 5 (02)
[9]   Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals [J].
Chen, Chi ;
Ye, Weike ;
Zuo, Yunxing ;
Zheng, Chen ;
Ong, Shyue Ping .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3564-3572
[10]   Band gap engineering in amorphous AlxGa1-xN:: Experiment and ab initio calculations [J].
Chen, H ;
Chen, KY ;
Drabold, DA ;
Kordesch, ME .
APPLIED PHYSICS LETTERS, 2000, 77 (08) :1117-1119