Graphene oxide-assisted synthesis of LiMn2O4 nanopowder

被引:9
作者
Majchrzycki, Lukasz [1 ,2 ]
Michalska, Monika [3 ]
Walkowiak, Mariusz [1 ]
Wilinski, Zbigniew [3 ]
Lipinska, Ludwika [3 ]
机构
[1] Inst Nonferrous Metals Div, Poznan Cent Lab Batteries & Cells, PL-61362 Poznan, Poland
[2] Poznan Univ Tech, Inst Phys, PL-60965 Poznan, Poland
[3] Inst Elect Mat Technol, PL-01919 Warsaw, Poland
关键词
LiMn2O4; spinel; graphene oxide; sol-gel synthesis; li-ion battery; RECHARGEABLE LITHIUM BATTERIES; HIGH-RATE PERFORMANCE; SPINEL NANOPARTICLES; CATHODE MATERIALS; MANGANESE OXIDES; ION BATTERIES; ROUTE;
D O I
10.2478/pjct-2013-0038
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The article reports sol-gel synthesis of nanosized spinel-type lithium manganese oxide LiMn2O4 (LMO) carried out in the presence of graphene oxide (GO) and its electrochemical lithium insertion ability. The synthesis was performed in an aqueous environment with lithium acetate and manganese acetate used as precursors and citric acid as a chelating agent. The material was characterized by X-ray diffraction, SEM microscopy, Raman spectroscopy and cyclic voltammetry. The calcination step totally eliminated graphene from the final product, nevertheless its presence during the synthesis was found to affect the resulting LiMn2O4 morphology by markedly reducing the size of grains. Moreover, potentials of electrochemical lithium insertion/deinsertion reactions have been shifted, as observed in the cyclic voltammetry measurements. Along with the diminished grain size the voltammetric curves of the graphene oxide-modified material exhibit higher oxidation and lower reduction peak currents. The study demonstrates that GO mediation/assistance during the sol-gel synthesis fosters more nanostructured powder and changes the electrochemical characteristics of the product.
引用
收藏
页码:15 / 19
页数:5
相关论文
共 24 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries [J].
Bak, Seong-Min ;
Nam, Kyung-Wan ;
Lee, Chang-Wook ;
Kim, Kwang-Heon ;
Jung, Hyun-Chul ;
Yang, Xiao-Qing ;
Kim, Kwang-Bum .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (43) :17309-17315
[3]   Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route [J].
Cabana, J. ;
Valdes-Solis, T. ;
Palacin, M. R. ;
Oro-Sole, J. ;
Fuertes, A. ;
Marban, G. ;
Fuertes, A. B. .
JOURNAL OF POWER SOURCES, 2007, 166 (02) :492-498
[4]   Preparation and characterization of LiMn2O4 spinel nanoparticles as cathode materials in secondary Li batteries [J].
Curtis, CJ ;
Wang, JX ;
Schulz, DL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A590-A598
[5]   Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics [J].
Eda, Goki ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (22) :2392-2415
[6]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[7]   Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction [J].
Jiang, C. H. ;
Dou, S. X. ;
Liu, H. K. ;
Ichihara, M. ;
Zhou, H. S. .
JOURNAL OF POWER SOURCES, 2007, 172 (01) :410-415
[8]   Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode [J].
Jiang, Chunhai ;
Ichihara, Masaki ;
Honma, Itaru ;
Zhou, Haoshen .
ELECTROCHIMICA ACTA, 2007, 52 (23) :6470-6475
[9]   Nanomaterials for lithium ion batteries [J].
Jiang, Chunhai ;
Hosono, Eiji ;
Zhou, Haoshen .
NANO TODAY, 2006, 1 (04) :28-33
[10]   Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel [J].
Julien, CM ;
Massot, M .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 97 (03) :217-230