Drug-Target Binding Affinity Prediction Based on Graph Neural Networks and Word2vec

被引:2
作者
Xia, Minghao [1 ]
Hu, Jing [1 ,2 ]
Zhang, Xiaolong [1 ,2 ]
Lin, Xiaoli [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430065, Hubei, Peoples R China
[2] Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan, Peoples R China
来源
INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II | 2022年 / 13394卷
基金
中国国家自然科学基金;
关键词
Drug-target interaction; Binding affinity; Drug redirection; Graph neural networks; Word2vec; LANGUAGE;
D O I
10.1007/978-3-031-13829-4_43
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Predicting drug-target interaction (DTI) is important for drug development because drug-target interaction affects the physiological function and metabolism of the organism through bonding reactions. Binding affinity is the most important factor among many factors affecting drug-target interaction, thus predicting binding affinity is the key point of drug redirection and new drug development. This paper proposes a drug-target binding affinity (DTA) model based on graph neural networks and word2vec. In this model, the word embedding method is used to convert targets/proteins sequence into sentences containing words to capture the local chemical information of targets/proteins. Then Simplified Molecular Input Line Entry System (SMILES) is used to convert drug molecules into graphs. After feature fusion, DTA is predicted by graph convolutional networks. We conduct experiments on the Kiba and Davis datasets, and the experimental results show that the proposed method significantly improves the prediction performance of DTA.
引用
收藏
页码:496 / 506
页数:11
相关论文
共 25 条
[1]   Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics [J].
Asgari, Ehsaneddin ;
Mofrad, Mohammad R. K. .
PLOS ONE, 2015, 10 (11)
[2]  
Cer R.Z., 2009, NUCL ACIDS RES, V37
[3]   Drug-target interaction prediction: databases, web servers and computational models [J].
Chen, Xing ;
Yan, Chenggang Clarence ;
Zhang, Xiaotian ;
Zhang, Xu ;
Dai, Feng ;
Yin, Jian ;
Zhang, Yongdong .
BRIEFINGS IN BIOINFORMATICS, 2016, 17 (04) :696-712
[4]  
Collobert R, 2011, J MACH LEARN RES, V12, P2493
[5]   Comprehensive analysis of kinase inhibitor selectivity [J].
Davis, Mindy I. ;
Hunt, Jeremy P. ;
Herrgard, Sanna ;
Ciceri, Pietro ;
Wodicka, Lisa M. ;
Pallares, Gabriel ;
Hocker, Michael ;
Treiber, Daniel K. ;
Zarrinkar, Patrick P. .
NATURE BIOTECHNOLOGY, 2011, 29 (11) :1046-U124
[6]   Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey [J].
Ezzat, Ali ;
Wu, Min ;
Li, Xiao-Li ;
Kwoh, Chee-Keong .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) :1337-1357
[7]  
Fout A, 2017, ADV NEUR IN, V30
[8]   SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines [J].
He, Tong ;
Heidemeyer, Marten ;
Ban, Fuqiang ;
Cherkasov, Artem ;
Ester, Martin .
JOURNAL OF CHEMINFORMATICS, 2017, 9
[9]  
Helson HE, 1999, REV COMP CH, V13, P313, DOI 10.1002/9780470125908.ch6
[10]  
Hu PW, 2016, IEEE IJCNN, P1236, DOI 10.1109/IJCNN.2016.7727339