Effect of Variable Background on an Oscillating Hot Coronal Loop

被引:17
作者
Al-Ghafri, K. S. [1 ]
Erdelyi, R. [1 ]
机构
[1] Univ Sheffield, Solar Phys & Space Plasma Res Ctr SP2RC, Sheffield S3 7RH, S Yorkshire, England
基金
英国科学技术设施理事会;
关键词
Magnetohydrodynamics (MHD); Plasmas; Sun: corona; Waves; SLOW MAGNETOACOUSTIC WAVES; DOPPLER-SHIFT OSCILLATIONS; BRAGG CRYSTAL SPECTROMETER; LONGITUDINAL OSCILLATIONS; MAGNETOHYDRODYNAMIC WAVES; TRANSVERSE OSCILLATIONS; SUMER; BRIGHTENINGS; DISSIPATION; REGION;
D O I
10.1007/s11207-013-0225-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the effect of a variable, i.e. time-dependent, background on the standing acoustic (i.e. longitudinal) modes generated in a hot coronal loop. A theoretical model of 1D geometry describing the coronal loop is applied. The background temperature is allowed to change as a function of time and undergoes an exponential decay with characteristic cooling times typical for coronal loops. The magnetic field is assumed to be uniform. Thermal conduction is assumed to be the dominant mechanism for damping hot coronal oscillations in the presence of a physically unspecified thermodynamic source that maintains the initial equilibrium. The influence of the rapidly cooling background plasma on the behaviour of standing acoustic (longitudinal) waves is investigated analytically. The temporally evolving dispersion relation and wave amplitude are derived by using the Wenzel-Kramers-Brillouin theory. An analytic solution for the time-dependent amplitude that describes the influence of thermal conduction on the standing longitudinal (acoustic) wave is obtained by exploiting the properties of Sturm-Liouville problems. Next, numerical evaluations further illustrate the behaviour of the standing acoustic waves in a system with a variable, time-dependent background. The results are applied to a number of detected loop oscillations. We find a remarkable agreement between the theoretical predictions and the observations. Despite the emergence of the cooling background plasma in the medium, thermal conduction is found to cause a strong damping for the slow standing magneto-acoustic waves in hot coronal loops in general. In addition to this, the increase in the value of thermal conductivity leads to a strong decay in the amplitude of the longitudinal standing slow MHD waves.
引用
收藏
页码:413 / 428
页数:16
相关论文
共 42 条
  • [1] THE EFFECT OF RADIATIVE COOLING ON CORONAL LOOP OSCILLATIONS
    Aschwanden, Markus J.
    Terradas, Jaume
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2008, 686 (02): : L127 - L130
  • [2] Active region EUV transient brightenings - First results by EIT of SOHO JOP 80
    Berghmans, D
    Clette, F
    [J]. SOLAR PHYSICS, 1999, 186 (1-2) : 207 - 229
  • [3] Radiative damping of standing acoustic waves in solar coronal loops
    Bradshaw, S. J.
    Erdelyi, R.
    [J]. ASTRONOMY & ASTROPHYSICS, 2008, 483 (01) : 301 - 309
  • [4] De Moortel I, 2000, ASTRON ASTROPHYS, V355, pL23
  • [5] The damping of slow MHD waves in solar coronal magnetic fields
    De Moortel, I
    Hood, AW
    [J]. ASTRONOMY & ASTROPHYSICS, 2003, 408 (02) : 755 - 765
  • [6] Longitudinal Waves in Coronal Loops
    De Moortel, I.
    [J]. SPACE SCIENCE REVIEWS, 2009, 149 (1-4) : 65 - 81
  • [7] How to channel photospheric oscillations into the corona
    De Pontieu, B
    Erdélyi, R
    De Moortel, I
    [J]. ASTROPHYSICAL JOURNAL, 2005, 624 (01) : L61 - L64
  • [8] Dissipation of Longitudinal Oscillations in Stratified Nonisothermal Hot Coronal Loops
    Erdelyi, R.
    Luna-Cardozo, M.
    Mendoza-Briceno, C. A.
    [J]. SOLAR PHYSICS, 2008, 252 (02) : 305 - 319
  • [9] Hinode EUV spectroscopic observations of coronal oscillations
    Erdelyi, R.
    Taroyan, Y.
    [J]. ASTRONOMY & ASTROPHYSICS, 2008, 489 (03): : L49 - L52
  • [10] Damping of Longitudinal Magneto-Acoustic Oscillations in Slowly Varying Coronal Plasma
    Erdelyi, R.
    Al-Ghafri, K. S.
    Morton, R. J.
    [J]. SOLAR PHYSICS, 2011, 272 (01) : 73 - 89