Constructing 0D/1D Ag3PO4/TiO2 S-scheme heterojunction for efficient photodegradation and oxygen evolution

被引:91
作者
Zhu, Yukun [1 ]
Zhuang, Yan [2 ]
Wang, Lele [2 ]
Tang, Hua [1 ]
Meng, Xianfeng [2 ]
She, Xilin [1 ]
机构
[1] Qingdao Univ, Sch Environm Sci & Engn, Qingdao 266071, Shandong, Peoples R China
[2] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
S -Scheme heterojunction; 0D; 1D; Oxygen production; Photocatalytic degradation; Ag3PO4; TiO2; PHOTOCATALYTIC PERFORMANCE; COCATALYST; REDUCTION; NANORODS; G-C3N4;
D O I
10.1016/S1872-2067(22)64099-3
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
An S-scheme heterojunction photocatalyst is capable of boosting photogenerated carrier separation and transfer, thus maintaining high photooxidation and photoredox ability. Herein, a 0D Ag3PO4 nanoparticles (NPs)/1D TiO2 nanofibers (NFs) S-scheme heterojunction with intimate interfacial contact was designed via the the hydro-thermal method. Benefiting from the abundant hydroxyl groups and size confinement effect of TiO2 NFs, the average diameter of the Ag3PO4 nanoparticles decreased from 100 to 22 nm, which favored the construction of a 0D/1D geometry heterojunction. The multifunctional Ag3PO4/TiO2 sample exhibited excellent photocatalytic activity and stability in photocatalytic oxygen production (726 mu mol/g/h) and photocatalytic degradation of various organic contaminants such as rhodamine B (100%), phenol (60%) and tetracycline hydrochloride (100%). The significant improvements in the photocatalytic performance and stability can be attributed to the intimate interfacial contacts and rich active sites of 0D/1D geometry, fast charge carrier migration, and outstanding photoredox properties induced by the S-scheme charge-transfer route. This work offers a promising strategy for constructing 0D/1D S-scheme heterojunction photocatalysts for improved photocatalytic performance. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2558 / 2568
页数:11
相关论文
共 50 条
  • [21] 0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation
    Wang, Yuting
    Zhu, Chengzhang
    Zuo, Gancheng
    Guo, Yang
    Xiao, Wei
    Dai, Yuxuan
    Kong, Jijie
    Xu, Xiaoming
    Zhou, Yuxuan
    Xie, Aming
    Sun, Cheng
    Xian, Qiming
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 278
  • [22] Rational Construction of a 0D/1D S-Scheme CeO2/CdWO4 Heterojunction for Photocatalytic CO2 Reduction and H2 Production
    Bahadoran, Ashkan
    Ramakrishna, Seeram
    Masudy-Panah, Saeid
    De Lile, Jeffrey Roshan
    Gu, JiaJun
    Liu, Qinglei
    Mishra, Yogendra Kumar
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (30) : 10931 - 10944
  • [23] 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation
    Wu, You
    Yang, Yi
    Gu, Miaoli
    Bie, Chuanbiao
    Tan, Haiyan
    Cheng, Bei
    Xu, Jingsan
    CHINESE JOURNAL OF CATALYSIS, 2023, 53 : 123 - 133
  • [24] A new S-scheme heterojunction of 1D ZnGa2O4/ZnO nanofiber for efficient photocatalytic degradation of TC-HCl
    Chen, Wenhui
    Kang, Tianxin
    Du, Fenqi
    Han, Peipei
    Gao, Meiling
    Hu, Peng
    Teng, Feng
    Fan, Haibo
    ENVIRONMENTAL RESEARCH, 2023, 232
  • [25] Nanoarchitectonics of S-scheme 0D/2D SbVO4/g-C3N4 photocatalyst for enhanced pollution degradation and H2 generation
    Li, Chenxi
    Zhao, Ying
    Fan, Jun
    Hu, Xiaoyun
    Liu, Enzhou
    Yu, Qiushuo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [26] 0D/2D Ti3+-TiO2/P-doped g-C3N4 S-scheme heterojunctions for efficient photocatalytic H2 evolution
    Yuan, Min
    Huang, Ke
    Dai, Dongqing
    Yin, Hongfei
    Zhao, Wei
    Jiang, Yixin
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 184
  • [27] Construction of S-scheme NiCoSe2/TiO2 heterojunction for efficient photocatalytic H2 evolution
    Dang, Ziyang
    Tian, Jingzhuo
    Fan, Jun
    Sun, Tao
    Liu, Enzhou
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 701
  • [28] Construction of 1D/0D/2D Zn0.5Cd0.5S/PdAg/g-C3N4 ternary heterojunction composites for efficient photocatalytic hydrogen evolution
    Lou, Yaqin
    Fei, Ting
    Zhang, Yiwei
    Dong, Guomeng
    Deng, Qinghua
    Zhou, Yuming
    Mao, Chunfeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (05) : 2936 - 2946
  • [29] Constructing 1D/0D Sb2S3/Cd0.6Zn0.4S S-scheme heterojunction by vapor transport deposition and in-situ hydrothermal strategy towards photoelectrochemical water splitting
    Liu, Dekang
    Jin, Wei
    Zhang, Liyuan
    Li, Qiujie
    Sun, Qian
    Wang, Yishan
    Hu, Xiaoyun
    Miao, Hui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 975
  • [30] The porous TiO2 nanotubes/Ag3PO4 heterojunction for enhancing sunlight photocatalytic activity
    Chi, Chunyan
    Pan, Jiaqi
    You, Mingzhu
    Dong, Zongjun
    Zhao, Weijie
    Song, Changsheng
    Zheng, Yingying
    Li, Chaorong
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2018, 114 : 173 - 178