Predicting Low-Cost Gas Sensor Readings From Transients Using Long Short-Term Memory Neural Networks

被引:14
|
作者
Culic Gambiroza, Jelena [1 ]
Mastelic, Toni [1 ]
Kovacevic, Tonko [2 ]
Cagalj, Mario [3 ]
机构
[1] Ericsson Nikola Tesla, ETK Res, Split 21000, Croatia
[2] Univ Split, Univ Dept Profess Studies, Split 21000, Croatia
[3] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Dept Elect & Comp, Split 21000, Croatia
来源
IEEE INTERNET OF THINGS JOURNAL | 2020年 / 7卷 / 09期
关键词
Transient analysis; Gas detectors; Artificial neural networks; Internet of Things; Prediction algorithms; Heating systems; Energy efficiency; gas sensor; Internet of Things (IoT); long short-term memory (LSTM); LSTM;
D O I
10.1109/JIOT.2020.2990526
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the everyday growth of the Internet of Things (IoT), the number of connected sensor devices increases as well, where each sensor consumes energy while being constantly online. During that time, they collect large amounts of data in short intervals leading to the collection of redundant and perhaps irrelevant data. Moreover, being commonly battery powered, sensor batteries need to be frequently replaced or recharged. The former requires smarter and less frequent data collection, while the latter being complementary to the former requires putting them to sleep while not being used in order to save energy. The focus of this article is low-cost gas sensors as they need to preheat for several minutes to reliably collect gas concentration. However, instead of waiting for a sensor to heat up, a transient, i.e., a data trend that the sensor collects while heating up is analyzed. It is shown that long short-term memory (LSTM) neural network can be used to learn and later predict the actual gas level from a part of the transient. This way, instead of being constantly online or fully preheating, the sensor needs to be turned on for only 20 s and then sleep for 120 s. With high accuracy, our approach decreases energy consumption by up to 85% compared to a system where sensors are constantly online, and more than 50% compared to a system where a sensor collects actual values instead of a part of the transient.
引用
收藏
页码:8451 / 8461
页数:11
相关论文
共 50 条
  • [41] Using Long Short-Term Memory (LSTM) Neural Networks to Predict Emergency Department Wait Time
    Cheng, Nok
    Kuo, Alex
    IMPORTANCE OF HEALTH INFORMATICS IN PUBLIC HEALTH DURING A PANDEMIC, 2020, 272 : 199 - 202
  • [42] Workload Prediction using ARIMA Statistical Model and Long Short-Term Memory Recurrent Neural Networks
    Sudhakar, Chapram
    Kumar, A. Revanth
    Reddy, S. Vishal
    Siddartha, Nupa
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, POWER AND COMMUNICATION TECHNOLOGIES (GUCON), 2018, : 600 - 604
  • [43] Analysis of Lumber Prices Time Series Using Long Short-Term Memory Artificial Neural Networks
    Lopes, Dercilio Junior Verly
    Bobadilha, Gabrielly dos Santos
    Bedette, Amanda Peres Vieira
    FORESTS, 2021, 12 (04):
  • [44] Prediction of crucial nuclear power plant parameters using long short-term memory neural networks
    Lei, Jichong
    Ren, Changan
    Li, Wei
    Fu, Liming
    Li, Zhicai
    Ni, Zining
    Li, Yukun
    Liu, Chengwei
    Zhang, Huajian
    Chen, Zhenping
    Yu, Tao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 21467 - 21479
  • [45] Automated sleep apnea detection in snoring signal using long short-term memory neural networks
    Cheng, Siyi
    Wang, Chao
    Yue, Keqiang
    Li, Ruixue
    Shen, Fanlin
    Shuai, Wenjie
    Li, Wenjun
    Dai, Lili
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [46] DC Pulsed Load Transient Classification Using Long Short-Term Memory Recurrent Neural Networks
    Oslebo, Damian
    Corzine, Keith
    Weatherford, Todd
    Maqsood, Atif
    Norton, Matthew
    2019 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2019,
  • [47] Predicting the performance of green stormwater infrastructure using multivariate long short-term memory (LSTM) neural network
    Al Mehedi, Md Abdullah
    Amur, Achira
    Metcalf, Jessica
    McGauley, Matthew
    Smith, Virginia
    Wadzuk, Bridget
    JOURNAL OF HYDROLOGY, 2023, 625
  • [48] VOICE CONVERSION USING DEEP BIDIRECTIONAL LONG SHORT-TERM MEMORY BASED RECURRENT NEURAL NETWORKS
    Sun, Lifa
    Kang, Shiyin
    Li, Kun
    Meng, Helen
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4869 - 4873
  • [49] Diagnosing Dysarthria with Long Short-Term Memory Networks
    Mayle, Alex
    Mou, Zhiwei
    Bunescu, Razvan
    Mirshekarian, Sadegh
    Xu, Li
    Liu, Chang
    INTERSPEECH 2019, 2019, : 4514 - 4518
  • [50] Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks
    Voigtlaender, Paul
    Doetsch, Patrick
    Ney, Hermann
    PROCEEDINGS OF 2016 15TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2016, : 228 - 233