Predicting Low-Cost Gas Sensor Readings From Transients Using Long Short-Term Memory Neural Networks

被引:14
|
作者
Culic Gambiroza, Jelena [1 ]
Mastelic, Toni [1 ]
Kovacevic, Tonko [2 ]
Cagalj, Mario [3 ]
机构
[1] Ericsson Nikola Tesla, ETK Res, Split 21000, Croatia
[2] Univ Split, Univ Dept Profess Studies, Split 21000, Croatia
[3] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Dept Elect & Comp, Split 21000, Croatia
来源
IEEE INTERNET OF THINGS JOURNAL | 2020年 / 7卷 / 09期
关键词
Transient analysis; Gas detectors; Artificial neural networks; Internet of Things; Prediction algorithms; Heating systems; Energy efficiency; gas sensor; Internet of Things (IoT); long short-term memory (LSTM); LSTM;
D O I
10.1109/JIOT.2020.2990526
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the everyday growth of the Internet of Things (IoT), the number of connected sensor devices increases as well, where each sensor consumes energy while being constantly online. During that time, they collect large amounts of data in short intervals leading to the collection of redundant and perhaps irrelevant data. Moreover, being commonly battery powered, sensor batteries need to be frequently replaced or recharged. The former requires smarter and less frequent data collection, while the latter being complementary to the former requires putting them to sleep while not being used in order to save energy. The focus of this article is low-cost gas sensors as they need to preheat for several minutes to reliably collect gas concentration. However, instead of waiting for a sensor to heat up, a transient, i.e., a data trend that the sensor collects while heating up is analyzed. It is shown that long short-term memory (LSTM) neural network can be used to learn and later predict the actual gas level from a part of the transient. This way, instead of being constantly online or fully preheating, the sensor needs to be turned on for only 20 s and then sleep for 120 s. With high accuracy, our approach decreases energy consumption by up to 85% compared to a system where sensors are constantly online, and more than 50% compared to a system where a sensor collects actual values instead of a part of the transient.
引用
收藏
页码:8451 / 8461
页数:11
相关论文
共 50 条
  • [41] Modelling energy demand response using long short-term memory neural networks
    JoséJoaquìn Mesa Jiménez
    Lee Stokes
    Chris Moss
    Qingping Yang
    Valerie N. Livina
    Energy Efficiency, 2020, 13 : 1263 - 1280
  • [42] Statistical downscaling of precipitation using long short-term memory recurrent neural networks
    Misra, Saptarshi
    Sarkar, Sudeshna
    Mitra, Pabitra
    THEORETICAL AND APPLIED CLIMATOLOGY, 2018, 134 (3-4) : 1179 - 1196
  • [43] Predicting the Transition from Short-term to Long-term Memory based on Deep Neural Network
    Shin, Gi-Hwan
    Kweon, Young-Seok
    Lee, Minji
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 95 - 99
  • [44] Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks
    Su, Hua
    Zhang, Tianyi
    Lin, Mengjing
    Lu, Wenfang
    Yan, Xiao-Hai
    REMOTE SENSING OF ENVIRONMENT, 2021, 260
  • [45] Efficient Neural Architecture Search for Long Short-Term Memory Networks
    Abed, Hamdi
    Gyires-Toth, Balint
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 287 - 292
  • [46] Long Short-Term Memory Neural Networks for Artificial Dialogue Generation
    Selouani, Sid Ahmed
    Yakoub, Mohammed Sidi
    2018 IEEE 42ND ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2018, : 761 - 768
  • [47] On Speaker Adaptation of Long Short-Term Memory Recurrent Neural Networks
    Miao, Yajie
    Metze, Florian
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1101 - 1105
  • [48] Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks
    Zazo, Ruben
    Lozano-Diez, Alicia
    Gonzalez-Dominguez, Javier
    Toledano, Doroteo T.
    Gonzalez-Rodriguez, Joaquin
    PLOS ONE, 2016, 11 (01):
  • [49] Predicting long-term trends in physical properties from short-term molecular dynamics simulations using long short-term memory
    Noda, Kota
    Shibuta, Yasushi
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (38)
  • [50] Machine Learning in Education: Predicting Student Performance Using Long Short-Term Memory Networks
    Alanya-Beltran, Joel
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,