MODERATELY FAST THREE-SCALE SINGULAR LIMITS

被引:6
作者
Schochet, Steven [1 ]
Xu, Xin [1 ,2 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Ocean Univ China, Sch Math Sci, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
singular limit; resonance;
D O I
10.1137/19M1287109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A uniform existence theorem is proven for quasilinear symmetric hyperbolic systems containing two small parameters tending to zero at different rates for more general initial data than required in a recent paper of Cheng, Ju, and Schochet. An iterated filtering scheme is developed, for which filtered spatially periodic solutions converge to a limit profile as the two parameters tend to zero. Necessary conditions are given for the occurrence of resonance, in which the fast part of the limit influences the slow part. The small Mach and small Alfven number limit of the ideal compressible MHD equations is shown to be nonresonant, and an example where resonance does occur is presented.
引用
收藏
页码:3444 / 3462
页数:19
相关论文
共 16 条
[1]   A MINICOURSE ON THE LOW MACH NUMBER LIMIT [J].
Alazard, Thomas .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (03) :365-404
[2]  
Cheng B., 2019, CONVERGENCE RATE EST
[3]   Three-Scale Singular Limits of Evolutionary PDEs [J].
Cheng, Bin ;
Ju, Qiangchang ;
Schochet, Steve .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (02) :601-625
[4]   A review on some contributions to perturbation theory, singular limits and well-posedness [J].
da Veiga, H. Beirao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) :271-292
[5]   Applications of Schochet's methods to parabolic equations [J].
Gallagher, I .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (10) :989-1054
[6]  
Grenier E, 1997, COMMUN PUR APPL MATH, V50, P821, DOI 10.1002/(SICI)1097-0312(199709)50:9<821::AID-CPA2>3.0.CO
[7]  
2-7
[8]   Oscillatory perturbations of the Navier Stokes equations [J].
Grenier, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (06) :477-498
[9]  
Kato T., 1982, A Short Introduction to Perturbation Theory for Linear Operators, DOI [10.1007/978-1-4612-5700-4, DOI 10.1007/978-1-4612-5700-4]
[10]   SINGULAR LIMITS OF QUASILINEAR HYPERBOLIC SYSTEMS WITH LARGE PARAMETERS AND THE INCOMPRESSIBLE LIMIT OF COMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :481-524