Fine structure in the large n limit of the non-Hermitian Penner matrix model

被引:7
作者
Alvarez, Gabriel [1 ]
Martinez Alonso, Luis [1 ]
Medina, Elena [2 ]
机构
[1] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Cadiz, Fac Ciencias, Dept Matemat, Puerto Real 11510, Spain
关键词
Random matrix theory; Penner model; 't Hooft limit; Laguerre polynomials; LAGUERRE-POLYNOMIALS; JACOBI-POLYNOMIALS; MODULI SPACE;
D O I
10.1016/j.aop.2015.07.011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we apply results on the asymptotic zero distribution of the Laguerre polynomials to discuss generalizations of the standard large n limit in the non-Hermitian Penner matrix model. In these generalizations g(n)n -> t, but the product g(n)n is not necessarily fixed to the value of the 't Hooft coupling t. If t > 1 and the limit l = lim(n ->infinity)vertical bar sin(pi/g(n))vertical bar(1/n) exists, then the large n limit is well-defined but depends both on t and on I. This result implies that for t > I the standard large n limit with g(n)n = t fixed is not well-defined. The parameter l determines a fine structure of the asymptotic eigenvalue support: for l not equal 0 the support consists of an interval on the real axis with charge fraction Q = 1 - 1/t and an l-dependent oval around the origin with charge fraction 1/t. For l = 1 these two components meet, and for l = 0 the oval collapses to the origin. We also calculate the total electrostatic energy epsilon, which turns out to be independent of l, and the free energy F = epsilon - QIn l, which does depend on the fine structure parameter l. The existence of large n asymptotic expansions of f beyond the planar limit as well as the double-scaling limit are also discussed. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:440 / 460
页数:21
相关论文
共 37 条
  • [1] Abramowitz M., 1970, HDB MATH FUNCTIONS
  • [2] ADAMCHIK VS, 2001, P 2001 INT S SYMB AL, P15
  • [3] Partition functions and the continuum limit in Penner matrix models
    Alvarez, Gabriel
    Martinez Alonso, Luis
    Medina, Elena
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (31)
  • [4] GENERALIZED PENNER MODELS TO ALL GENERA
    AMBJORN, J
    KRISTJANSEN, CF
    MAKEENKO, Y
    [J]. PHYSICAL REVIEW D, 1994, 50 (08): : 5193 - 5203
  • [5] [Anonymous], 1900, Q. J. Pure Appl. Math
  • [6] [Anonymous], 2010, Handbook of Mathematical Functions
  • [7] NEW METHOD IN THE COMBINATORICS OF THE TOPOLOGICAL EXPANSION
    BESSIS, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (02) : 147 - 163
  • [8] Bessis D., 1980, Adv. Appl. Math, V1, P109, DOI [10.1016/0196-8858(80)90008-1, DOI 10.1016/0196-8858(80)90008-1]
  • [9] Breakdown of universality in multi-cut matrix models
    Bonnet, G
    David, F
    Eynard, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (38): : 6739 - 6768
  • [10] THE PENNER MATRIX MODEL AND C = 1 STRINGS
    CHAUDHURI, S
    DYKSTRA, H
    LYKKEN, J
    [J]. MODERN PHYSICS LETTERS A, 1991, 6 (18) : 1665 - 1677