Efficient Mode of Action Identification by Support Vector Machine Regression

被引:0
|
作者
Bevilacqua, Vitoantonio [1 ]
Pannarale, Paolo [1 ]
机构
[1] Politecn Bari, Dipartimento Elettrotecn & Elettron, I-70125 Bari, Italy
来源
EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS | 2012年 / 304卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discovering the molecular targets of compounds or the cause of physiological conditions, among the multitude of known genes, is one of the major challenges of bioinformatics. Our approach has the advantage of not needing control samples, libraries or numerous assays. The so far proposed implementations of this strategy are computationally demanding. Our solution, while performing comparably to state of the art algorithms in terms of discovered targets, is more efficient in terms of memory and time consumption.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 50 条
  • [1] TSVR: An efficient Twin Support Vector Machine for regression
    Peng Xinjun
    NEURAL NETWORKS, 2010, 23 (03) : 365 - 372
  • [2] An Efficient Twin Projection Support Vector Machine for Regression
    Ouyang, Xinyu
    Zhao, Nannan
    Gao, Chuang
    Wang, Lidong
    ENGINEERING LETTERS, 2019, 27 (01) : 103 - 107
  • [3] Dynamic load identification using support vector regression machine
    Yang, Jieming
    Li, Min
    Zhou, Chengzhao
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2006, 26 (SUPPL.): : 258 - 261
  • [4] An ε-twin support vector machine for regression
    Yuan-Hai Shao
    Chun-Hua Zhang
    Zhi-Min Yang
    Ling Jing
    Nai-Yang Deng
    Neural Computing and Applications, 2013, 23 : 175 - 185
  • [5] An ε-twin support vector machine for regression
    Shao, Yuan-Hai
    Zhang, Chun-Hua
    Yang, Zhi-Min
    Jing, Ling
    Deng, Nai-Yang
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (01) : 175 - 185
  • [6] A flexible support vector machine for regression
    Xiaobo Chen
    Jian Yang
    Jun Liang
    Neural Computing and Applications, 2012, 21 : 2005 - 2013
  • [7] A flexible support vector machine for regression
    Chen, Xiaobo
    Yang, Jian
    Liang, Jun
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (08) : 2005 - 2013
  • [8] Regression depth and support vector machine
    Christmann, Andreas
    DATA DEPTH: ROBUST MULTIVARIATE ANALYSIS, COMPUTATIONAL GEOMETRY AND APPLICATIONS, 2006, 72 : 71 - 85
  • [9] Efficient Structured Support Vector Regression
    Jia, Ke
    Wang, Lei
    Liu, Nianjun
    COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 586 - 598
  • [10] Support vector regression for structural identification via component-mode synthesis
    Zhang, J.
    Sato, T.
    Iai, S.
    STRUCTURAL ENGINEERING AND MECHANICS, 2007, 25 (05) : 631 - 636