Adaptive modelling of gene regulatory network using Bayesian information criterion-guided sparse regression approach

被引:6
作者
Shi, Ming [1 ,2 ]
Shen, Weiming [2 ]
Wang, Hong-Qiang [1 ]
Chong, Yanwen [2 ]
机构
[1] Chinese Acad Sci, Inst Intelligent Machines, Machine Intelligence & Computat Biol Lab, POB 1130, Hefei 230031, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, 129 Luoyu Rd, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
genetics; Bayes methods; genomics; regression analysis; inference mechanisms; bioinformatics; adaptive modelling; gene regulatory network; Bayesian information criterion-guided sparse regression approach; GRN; microarray expression data; systems biology; GRN reconstruction; optimisation; l(1)-norm regularisation; TRANSCRIPTION FACTOR; SELECTION; IDENTIFICATION; LASSO;
D O I
10.1049/iet-syb.2016.0005
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Inferring gene regulatory networks (GRNs) from microarray expression data are an important but challenging issue in systems biology. In this study, the authors propose a Bayesian information criterion (BIC)-guided sparse regression approach for GRN reconstruction. This approach can adaptively model GRNs by optimising the l(1)-norm regularisation of sparse regression based on a modified version of BIC. The use of the regularisation strategy ensures the inferred GRNs to be as sparse as natural, while the modified BIC allows incorporating prior knowledge on expression regulation and thus avoids the overestimation of expression regulators as usual. Especially, the proposed method provides a clear interpretation of combinatorial regulations of gene expression by optimally extracting regulation coordination for a given target gene. Experimental results on both simulation data and real-world microarray data demonstrate the competent performance of discovering regulatory relationships in GRN reconstruction.
引用
收藏
页码:252 / 259
页数:8
相关论文
共 35 条
  • [1] Gene regulatory network modelling: a state-space approach
    Wu, Fang-Xiang
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2008, 2 (01) : 1 - 14
  • [2] A Sparse Bayesian Learning Based Approach to Inferring Gene Regulatory Networks
    Singh, Nitin
    Sundaresan, Aishwarya
    Vidyasagar, M.
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 113 - 116
  • [3] Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information
    Fan, Yue
    Wang, Xiao
    Peng, Qinke
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2017, 2017
  • [4] A Sparse Bayesian Learning Method for Structural Equation Model-Based Gene Regulatory Network Inference
    Li, Yan
    Liu, Dayou
    Chu, Jianfeng
    Zhu, Yungang
    Liu, Jie
    Cheng, Xiaochun
    IEEE ACCESS, 2020, 8 : 40067 - 40080
  • [5] Network-guided sparse regression modeling for detection of gene-by-gene interactions
    Lu, Chen
    Latourelle, Jeanne
    O'Connor, George T.
    Dupuis, Josee
    Kolaczyk, Eric D.
    BIOINFORMATICS, 2013, 29 (10) : 1241 - 1249
  • [6] Investigation of the Effects of Imputation Methods for Gene Regulatory Networks Modelling Using Dynamic Bayesian Networks
    Lim, Sin Yi
    Mohamad, Mohd Saberi
    Chai, Lian En
    Deris, Safaai
    Chan, Weng Howe
    Omatu, Sigeru
    Manuel Corchado, Juan
    Sjaugi, Muhammad Farhan
    Zainuddin, Muhammad Mahfuz
    Rajamohan, Gopinathaan
    Ibrahim, Zuwairie
    Yusof, Zulkifli Md.
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, (DCAI 2016), 2016, 474 : 413 - 421
  • [7] A Full Bayesian Approach to Sparse Network Inference Using Heterogeneous Datasets
    Jin, Junyang
    Yuan, Ye
    Goncalves, Jorge
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (07) : 3282 - 3288
  • [8] Inference of gene regulatory network by Bayesian network using metropolis-hastings algorithm
    Kirimasthong, Khwunta
    Manorat, Aompilai
    Chaijaruwanich, Jeerayut
    Prasitwattanaseree, Sukon
    Thammarongtham, Chinae
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2007, 4632 : 276 - +
  • [9] An adaptive shortest-solution guided decimation approach to sparse high-dimensional linear regression
    Yu, Xue
    Sun, Yifan
    Zhou, Hai-Jun
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Adaptive lasso echo state network based on modified Bayesian information criterion for nonlinear system modeling
    Qiao, Junfei
    Wang, Lei
    Yang, Cuili
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10) : 6163 - 6177