Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors

被引:131
作者
Haertel, Andreas [1 ]
Janssen, Mathijs [1 ]
Weingarth, Daniel [2 ]
Presser, Volker [2 ,3 ]
van Roij, Rene [1 ]
机构
[1] Univ Utrecht, Ctr Extreme Matter & Emergent Phenomena, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
[2] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany
[3] Univ Saarland, D-66123 Saarbrucken, Germany
关键词
CAPACITIVE DEIONIZATION; ELECTROCHEMICAL SYSTEM; ENERGY; ELECTRODES; GENERATION; BATTERY;
D O I
10.1039/c5ee01192b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal energy is abundantly available, and especially low-grade heat is often wasted in industrial processes as a by-product. Tapping into this vast energy reservoir with cost-attractive technologies may become a key element for the transition to an energy-sustainable economy and society. We propose a novel heat-to-current converter which is based on the temperature dependence of the cell voltage of charged supercapacitors. Using a commercially available supercapacitor, we observed a thermal cell-voltage rise of around 0.6 mV K-1 over a temperature window of 0 degrees C to 65 degrees C. Within our theoretical model, this can be used to operate a Stirling-like charge-voltage cycle whose efficiency is competitive to the most-efficient thermoelectric (Seebeck) engines. Our proposed heat-to-current converter is built from cheap materials, contains no moving parts, and could operate with a plethora of electrolytes which can be chosen for optimal performance at specific working temperatures. Therefore, this heat-to-current converter is interesting for small-scale, domestic, and industrial applications.
引用
收藏
页码:2396 / 2401
页数:6
相关论文
共 38 条
[1]   Single-Ion Heat Engine at Maximum Power [J].
Abah, O. ;
Ronagel, J. ;
Jacob, G. ;
Deffner, S. ;
Schmidt-Kaler, F. ;
Singer, K. ;
Lutz, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (20)
[2]   Dipolar Poisson-Boltzmann equation: Ions and dipoles close to charge interfaces [J].
Abrashkin, Ariel ;
Andelman, David ;
Orland, Henri .
PHYSICAL REVIEW LETTERS, 2007, 99 (07)
[3]   Temperature Effects on Energy Production by Salinity Exchange [J].
Ahualli, Silvia ;
Fernandez, Maria M. ;
Iglesias, Guillermo ;
Delgado, Angel V. ;
Jimenez, Maria L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (20) :12378-12385
[4]   Self-Discharge in Electrochemical Capacitors: A Perspective Article [J].
Andreas, Heather A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5047-A5053
[5]   Hydration structure of salt solutions from ab initio molecular dynamics [J].
Bankura, Arindam ;
Carnevale, Vincenzo ;
Klein, Michael L. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (01)
[6]   Attractive forces in microporous carbon electrodes for capacitive deionization [J].
Biesheuvel, P. M. ;
Porada, S. ;
Levi, M. ;
Bazant, M. Z. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (05) :1365-1376
[7]   'Blue energy' from ion adsorption and electrode charging in sea and river water [J].
Boon, Niels ;
van Roij, Rene .
MOLECULAR PHYSICS, 2011, 109 (7-10) :1229-1241
[8]   Supercapacitor Operating At 200 Degrees Celsius [J].
Borges, Raquel S. ;
Reddy, Arava Leela Mohana ;
Rodrigues, Marco-Tulio F. ;
Gullapalli, Hemtej ;
Balakrishnan, Kaushik ;
Silva, Glaura G. ;
Ajayan, Pulickel M. .
SCIENTIFIC REPORTS, 2013, 3
[9]   A Thermoelectric Heat Engine with Ultracold Atoms [J].
Brantut, Jean-Philippe ;
Grenier, Charles ;
Meineke, Jakob ;
Stadler, David ;
Krinner, Sebastian ;
Kollath, Corinna ;
Esslinger, Tilman ;
Georges, Antoine .
SCIENCE, 2013, 342 (6159) :713-715
[10]   Extracting Renewable Energy from a Salinity Difference Using a Capacitor [J].
Brogioli, Doriano .
PHYSICAL REVIEW LETTERS, 2009, 103 (05)