Crystalline MoP-amorphous MoS2 hybrid for superior hydrogen evolution reaction

被引:10
|
作者
Li, Xiaolin [1 ]
Zhang, Jialing [1 ]
Zhang, Chi [1 ]
Chen, Da [1 ]
Wang, Bolin [1 ]
Zhang, Rui [1 ]
Zhang, Yu [1 ]
Yan, Xinrong [1 ]
Gan, Qian [1 ]
Wang, Shentang [1 ]
Luo, Hong Qun [1 ]
Li, Nian Bing [1 ]
机构
[1] Southwest Univ, Sch Chem & Chem Engn, Chongqing 400715, Peoples R China
关键词
Crystalline MoP; Amorphous MoS2; Surface engineering; Hydrogen evolution reaction; ACTIVE EDGE SITES; CATALYST; PERFORMANCE; GRAPHENE; ELECTROCATALYST; NANOPARTICLES; CHALLENGES; OXIDATION; DESIGN; FILMS;
D O I
10.1016/j.jssc.2020.121564
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Molybdenum disulfide (MoS2) is regarded as a perfect catalyst for electrochemical hydrogen evolution reaction (HER). However, the active sites are usually concealed due to the unique two dimensional structure of MoS2. Herein, we propose a facile surface engineering modus to improve the HER activity of MoS2. This strategy is demonstrated by in-situ growth of amorphous MoS2 layer on the molybdenum phosphide (MoP) nanoparticles anchored on the carbon nanotubes (MoS2/MoP/CNT). The HER activity is significantly promoted both through the defect engineering of amorphous MoS(2 )and the synergistic effect between the MoS2 and MoP phases. The MoS2/MoP/CNT sample presents significantly higher HER performance than the pure phase of MoP/CNT and MoS2/CNT samples, requiring overpotentials of 73 and 141 mV to drive a current density of 10 and 100 mA cm(-2).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Monolayer MoS2 quantum dots as catalysts for efficient hydrogen evolution
    Qiao, Wen
    Yan, Shiming
    Song, Xueyin
    Zhang, Xing
    Sun, Yuan
    Chen, Xing
    Zhong, Wei
    Du, Youwei
    RSC ADVANCES, 2015, 5 (118): : 97696 - 97701
  • [22] MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction
    Wang, Peican
    Wan, Lei
    Lin, Yuqun
    Wang, Baoguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (31) : 16566 - 16574
  • [23] Effects of Platinum Group Metals on MoS2 Nanosheets for a High-Performance Hydrogen Evolution Reaction Catalyst
    Jung, Han Young
    Chae, Min Ju
    Park, Jong Hwan
    Song, Young il
    Ro, Jae Chul
    Suh, Su Jeong
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) : 10748 - 10755
  • [24] Construction of MoP/MoS2 Core-shell Structure Electrocatalyst for Boosting Hydrogen Evolution Reaction
    Meng, Dan
    Ran, Shunjiang
    Gao, Ling
    Zhang, Yue
    San, Xiaoguang
    Zhang, Lei
    Li, Ruixiang
    Jin, Quan
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2024, 40 (03) : 490 - 498
  • [25] MoS2 Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution Reaction
    Wu, Zhuangzhi
    Fang, Baizeng
    Wang, Zhiping
    Wang, Changlong
    Liu, Zhihong
    Liu, Fangyang
    Wang, Wei
    Alfantazi, Alcram
    Wang, Dezhi
    Wilkinson, David P.
    ACS CATALYSIS, 2013, 3 (09): : 2101 - 2107
  • [26] Hard template strategy for the synthesis of porous MoS2/MoO2 hybrid electrocatalyst for hydrogen evolution reaction
    Huang, Yuming
    Xie, Xin
    Zhang, Yongjiang
    Ding, Jie
    Liu, Leyan
    Fan, Yunxiao
    Lv, Hualun
    Liu, Yushan
    Cai, Qiang
    APPLIED SURFACE SCIENCE, 2020, 520
  • [27] Carbon-coated MoS2 nanosheets as highly efficient electrocatalysts for the hydrogen evolution reaction
    Dou, Shuo
    Wu, Jianghong
    Tao, Li
    Shen, Anli
    Huo, Jia
    Wang, Shuangyin
    NANOTECHNOLOGY, 2016, 27 (04)
  • [28] Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction
    Hou, Dongman
    Zhou, Weijia
    Liu, Xiaojun
    Zhou, Kai
    Xie, Jian
    Li, Guoqiang
    Chen, Shaowei
    ELECTROCHIMICA ACTA, 2015, 166 : 26 - 31
  • [29] Castoff derived Biomass-carbon supported MoS2 nanosheets for hydrogen evolution reaction
    Chen, Huan
    Jiang, Haichao
    Cao, Xuepu
    Zhang, Yantao
    Zhang, Xiangjing
    Qiao, Shanlin
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 252
  • [30] Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation
    Li, B. B.
    Qiao, S. Z.
    Zheng, X. R.
    Yang, X. J.
    Cui, Z. D.
    Zhu, S. L.
    Li, Z. Y.
    Liang, Y. Q.
    JOURNAL OF POWER SOURCES, 2015, 284 : 68 - 76