THE 3D NONLINEAR DISSIPATIVE SYSTEM MODELING ELECTRO-DIFFUSION WITH BLOW-UP IN ONE DIRECTION

被引:3
作者
Liu, Qiao [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Navier-Stokes/Poisson-Nernst-Planck system; blow-up; anisotropic Lebesgue spaces; NAVIER-STOKES EQUATIONS; ONE-COMPONENT REGULARITY; PLANCK-POISSON SYSTEM; GLOBAL WELL-POSEDNESS; WEAK SOLUTIONS; CRITERIA; FLUID; SPACE; EULER;
D O I
10.4310/CMS.2019.v17.n1.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes a sufficient condition for the breakdown of local smooth solutions, to the Cauchy problem of the 3D Navier-Stokes/Poisson-Nernst-Planck system modeling electro-diffusion, via one directional derivative of the horizontal component of the velocity field (i.e., (partial derivative(i)u(1),partial derivative(j)u(2),0) where i, j is an element of {1,2,3}) in the framework of the anisotropic Lebesgue spaces. More precisely, let T-* > 0 be the finite and maximum existence time of local smooth solution. Then integral(T*)(0)(parallel to parallel to partial derivative(i)u(1)(t)parallel to L-xi(alpha) parallel to(q)(Lx (i) over capx (i) over tilde beta) + parallel to parallel to partial derivative(j)u(2)(t)parallel to L-xj(alpha) parallel to(q)(Lx (i) over capx (i) over tilde beta)) dt = +infinity, with 2/q + 1/alpha + 2/beta = m is an element of [1, 3/2) and 3/m < alpha <= beta <= 1/m-1, where (i,<(i)over cap>,(i) over tilde) and (j,(j) over cap,(j) over tilde) belong to the permutation group on the set S-3 := {1,2,3}. This reveals that the horizontal component of the velocity field plays a more dominant role than the density functions of charged particles in the blow-up theory of the system.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 41 条
[1]  
[Anonymous], 2004, Appl. Math.
[2]  
[Anonymous], 2002, Research Notes in Mathematics
[3]  
[Anonymous], 2003, Uspekhi Matematicheskih Nauk
[4]  
Balbuena P.B., 2004, Lithium-Ion Batteries: Solid-Electrolyte Interphase
[5]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[6]   Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations [J].
Berselli, LC ;
Galdi, GP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3585-3595
[7]   GLOBAL WELL-POSEDNESS AND STABILITY OF ELECTROKINETIC FLOWS [J].
Bothe, Dieter ;
Fischer, Andre ;
Saal, Juergen .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1263-1316
[8]   Global Regularity Criterion for the 3D Navier-Stokes Equations Involving One Entry of the Velocity Gradient Tensor [J].
Cao, Chongsheng ;
Titi, Edriss S. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (03) :919-932
[9]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[10]   On the Critical One Component Regularity for 3-D Navier-Stokes System: General Case [J].
Chemin, Jean-Yves ;
Zhang, Ping ;
Zhang, Zhifei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (03) :871-905