Quantum Hall effect in monolayer-bilayer graphene planar junctions

被引:25
作者
Tian, Jifa [1 ,2 ]
Jiang, Yongjin [1 ,3 ,4 ]
Childres, Isaac [1 ,2 ]
Cao, Helin [1 ,2 ]
Hu, Jiangping [1 ]
Chen, Yong P. [1 ,2 ,5 ]
机构
[1] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Zhejiang Normal Univ, Ctr Stat & Theoret Condensed Matter Phys, Jinhua 321004, Peoples R China
[4] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[5] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
INSULATING STATES; DIRAC FERMIONS; BERRYS PHASE; TRANSPORT;
D O I
10.1103/PhysRevB.88.125410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Hall resistance of a homogeneous electron system is well known to be antisymmetric with respect to the magnetic field and the sign of charge carriers. We have observed that such symmetries no longer hold in planar hybrid structures consisting of partly single layer graphene (SLG) and partly bilayer graphene (BLG) in the quantum Hall (QH) regime. In particular, the Hall resistance across the SLG and BLG interface is observed to exhibit quantized plateaus that switch between those characteristic of SLG QH states and BLG QH states when either the sign of the charge carriers (controlled by a back gate) or the direction of the magnetic field is reversed. Simultaneously reversing both the carrier type and the magnetic field gives rise to the same quantized Hall resistances. The observed SLG-BLG interface QH states, with characteristic asymmetries with respect to the signs of carriers and magnetic field, are determined only by the chirality of the QH edge states and can be explained by a Landauer-Buttiker analysis applied to such graphene hybrid structures involving two regions of different Landau level structures.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Quantized transport in graphene p-n junctions in a magnetic field [J].
Abanin, D. A. ;
Levitov, L. S. .
SCIENCE, 2007, 317 (5838) :641-643
[2]   Spin-filtered edge states and quantum hall effect in graphene [J].
Abanin, DA ;
Lee, PA ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[3]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[4]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
[7]  
Dean CR, 2011, NAT PHYS, V7, P693, DOI [10.1038/NPHYS2007, 10.1038/nphys2007]
[8]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[9]   Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J].
Du, Xu ;
Skachko, Ivan ;
Duerr, Fabian ;
Luican, Adina ;
Andrei, Eva Y. .
NATURE, 2009, 462 (7270) :192-195
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)