GENERALIZED YANG'S CONJECTURE ON THE PERIODICITY OF ENTIRE FUNCTIONS

被引:17
作者
Liu, Kai [1 ]
Wei, Yuming [1 ]
Yu, Peiyong [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
关键词
Entire functions; periodicity; differential-difference equations; DIFFERENTIAL-DIFFERENCE EQUATIONS;
D O I
10.4134/BKMS.b190934
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the periodicity of transcendental entire functions, Yang's Conjecture is proposed in [6, 13]. In the paper, we mainly consider and obtain partial results on a general version of Yang's Conjecture, namely, if f(z)(n) f((k))(z) is a periodic function, then f (z) is also a periodic function. We also prove that if f (z)(n) + f((k)) (z) is a periodic function with additional assumptions, then f (z) is also a periodic function, where n, k are positive integers.
引用
收藏
页码:1259 / 1267
页数:9
相关论文
共 17 条
[1]  
Baker I. N., 1966, ACTA SCI MATH SZEGED, V27, P197
[2]  
Dong XJ, 2019, HOUSTON J MATH, V45, P1021
[3]  
Gross F., 1971, RENT CRIC MAT PALERM, V21, P284, DOI DOI 10.1007/BF02843792
[4]  
Hal?se G., 1972, PERIOD MATH HUNG, V2, P73, DOI DOI 10.1007/BF02018653
[5]   Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity [J].
Heittokangas, J. ;
Korhonen, R. ;
Laine, I. ;
Rieppo, J. ;
Zhang, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) :352-363
[6]  
Li P, 2019, HOUSTON J MATH, V45, P431
[7]   A NOTE ON THE PERIODICITY OF ENTIRE FUNCTIONS [J].
Liu, Kai ;
Yu, Peiyong .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (02) :290-296
[8]   SOME RESULTS RELATED TO COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS OF CERTAIN TYPES [J].
Liu, Kai ;
Dong, Xianjing .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (05) :1453-1467
[9]   ON THE PERIODICITY OF TRANSCENDENTAL ENTIRE FUNCTIONS [J].
Liu, Xinling ;
Korhonen, Risto .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (03) :453-465
[10]  
Ozawa M., 1977, KODAI MATH SEM REP, V29, P308