Ab initio molecular dynamics simulation and free energy exploration of copper(I) complexation by chloride and bisulfide in hydrothermal fluids

被引:75
|
作者
Mei, Yuan [1 ,2 ,3 ]
Sherman, David M. [2 ]
Liu, Weihua [3 ]
Brugger, Joel [1 ,4 ]
机构
[1] Univ Adelaide, Sch Earth & Environm Sci, Tecton Resources & Explorat TRaX, Adelaide, SA 5005, Australia
[2] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England
[3] CSIRO Earth Sci & Resource Engn, Clayton, Vic 3168, Australia
[4] S Australian Museum, Adelaide, SA 5000, Australia
基金
澳大利亚研究理事会;
关键词
ABSORPTION FINE-STRUCTURE; DENSITY-FUNCTIONAL THEORY; AQUEOUS METAL-COMPLEXES; THERMODYNAMIC PROPERTIES; ELEVATED-TEMPERATURES; ION ASSOCIATION; DEGREES-C; THEORETICAL PREDICTION; COORDINATION STRUCTURE; ACTIVITY-COEFFICIENTS;
D O I
10.1016/j.gca.2012.10.027
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Chloride and bisulfide are the primary ligands believed to control the transport of copper in hydrothermal fluids. Ab initio molecular dynamics (MD) simulations based on density functional theory were conducted to predict the stoichiometries and geometries of Cu(I) complexes in mixed chloride and hydrosulfide (HS- and H2S(aq)) fluids at ambient temperature and at 327 degrees C and 500 bar, and to assess the relative importance of the chloride and hydrosulfide ligands for Cu transport. The simulations accurately reproduce the identity and geometries of Cu(I) chloride and bisulfide species derived from experimental solubility, UV-Vis, and in situ XAS results. The simulations indicate the following ligand preference: HS- > Cl- > H2S for Cu(I) complexes, but predict a high stability of the mixed-ligand complex, CuCl(HS)(-), a species similar to NaClCuHS species in vapour phase suggested by Zajacz et al. (2011). The thermodynamic properties (formation constants, logKs) of Cu(I) chloride and bisulfide complexes were investigated by distance-constrained MD simulations using thermodynamic integration. The predicted logKs of the following reactions are in good agreement (within 1 log unit) with the experimental values (Brugger et al., 2007; Liu et al., 2001): Cu+ + Cl- = CuCl(aq); log K-327 degrees C,K-calc = +3.87 +/- 0.14; log K-325 degrees C,K-exp = +4.12; CuCl(aq) + Cl- = CuCl2-; log K-327 degrees C,K-calc = +2.84 +/- 0.09; log K-325 degrees C,K-exp = +1.98; CuCl2- + Cl- = CuCl32-; log K-327 degrees C,K-calc = -1.23 +/- 0.21; log K-325 degrees C,K-exp = -2.17. The fair agreements between the predicted logKs with those derived from experimental data demonstrate the potential of predicting thermodynamic properties for transition metal complexes under hydrothermal conditions by MD simulations. The formation constant for the mixed-ligand complex CuCl(HS)(-) is calculated for the first time: Cu+ + Cl- + HS- = CuCl(HS)(-); log K-327 degrees C,K-calc = +11.47. Determination of the formation constants for Cu(I) complexes enabled the construction of activity-activity diagrams entirely based on the MD simulation data. The results suggest that the mixed-ligand complex plays an important role in Cu transport in hydrothermal fluids. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:45 / 64
页数:20
相关论文
共 50 条
  • [1] Zinc complexation in hydrothermal chloride brines: Results from ab initio molecular dynamics calculations
    Harris, DJ
    Brodholt, JP
    Sherman, DM
    JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (07): : 1050 - 1054
  • [2] Palladium complexation in chloride- and bisulfide-rich fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy
    Mei, Yuan
    Etschmann, Barbara
    Liu, Weihua
    Sherman, David M.
    Barnes, Stephen J.
    Fiorentini, Marco L.
    Seward, Terry M.
    Testemale, Denis
    Brugger, Joel
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2015, 161 : 128 - 145
  • [3] Complexation of copper in acetate-rich low-temperature hydrothermal fluids: Evidence from ab initio molecular dynamics simulations
    Lai, Feng
    Liu, Liangming
    Cao, Wei
    CHEMICAL GEOLOGY, 2018, 476 : 100 - 118
  • [4] Metal complexation and ion hydration in low density hydrothermal fluids: Ab initio molecular dynamics simulation of Cu(I) and Au(I) in chloride solutions (25-1000 °C, 1-5000 bar)
    Mei, Yuan
    Liu, Weihua
    Sherman, David M.
    Brugger, Joel
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2014, 131 : 196 - 212
  • [5] Zinc complexation in chloride-rich hydrothermal fluids (25-600°C): A thermodynamic model derived from ab initio molecular dynamics
    Mei, Yuan
    Sherman, David M.
    Liu, Weihua
    Etschmann, Barbara
    Testemale, Denis
    Brugger, Joel
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2015, 150 : 265 - 284
  • [6] Simulation of ab initio molecular dynamics of shock wave on copper
    Zhang, L
    Cai, LC
    Xiang, SK
    Jing, FQ
    Chen, DQ
    CHINESE PHYSICS LETTERS, 2003, 20 (12) : 2091 - 2093
  • [7] Yttrium complexation and hydration in chloride-rich hydrothermal fluids: A combined ab initio molecular dynamics and in situ X-ray absorption spectroscopy study
    Guan, Qiushi
    Mei, Yuan
    Etschmann, Barbara
    Testemale, Denis
    Louvel, Marion
    Brugger, Joel
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2020, 281 : 168 - 189
  • [8] Complexation of Cu+ in Hydrothermal NaCl Brines:: Ab initio molecular dynamics and energetics
    Sherman, David M.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (03) : 714 - 722
  • [9] Titanium complexation in subduction zone fluids: Insights from ab initio molecular dynamics
    van Sijl, Jelle
    Allan, Neil L.
    Davies, Gareth R.
    van Westrenen, Wim
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A1373 - A1373
  • [10] Silver complexation in chlorine- and sulfur-rich hydrothermal fluids: Insight from ab initio molecular dynamics simulations
    Lai, Feng
    Zou, Shaohao
    Xu, Deru
    Chemical Geology, 2022, 589