Image Retrieval Using a Deep Attention-Based Hash

被引:12
|
作者
Li, Xinlu [1 ]
Xu, Mengfei [1 ,3 ]
Xu, Jiabo [2 ,4 ]
Weise, Thomas [1 ]
Zou, Le [1 ]
Sun, Fei [1 ]
Wu, Zhize [1 ]
机构
[1] Hefei Univ, Inst Appl Optimizat, Sch Arti cial Intelligence & Big Data, Hefei 230601, Peoples R China
[2] Nanchang Hangkong Univ, Dept Software, Nanchang 330063, Jiangxi, Peoples R China
[3] Nanchang Univ, Sch Software, Nanchang 330047, Jiangxi, Peoples R China
[4] Nanchang Univ, Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
基金
中国国家自然科学基金;
关键词
Image retrieval; Hamming distance; Semantics; Computational modeling; Feature extraction; Machine learning; Binary codes; Content-based image retrieval; depth-wise separable convolution kernel; pairwise loss; NETWORK;
D O I
10.1109/ACCESS.2020.3011102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image retrieval is becoming more and more important due to the rapid increase of the number of images on the web. To improve the efficiency of computing the similarity of images, hashing has moved into the focus of research. This paper proposes a Deep Attention-based Hash (DAH) retrieval model, which combines an attention module and a convolutional neural network to obtain hash codes with strong representability. Our DAH has the following features: The Hamming distance between the hash codes generated by similar images is small and the Hamming distance of hash codes of dissimilar images has a larger constant value. The quantitative loss from Euclidean distance to Hamming distance is minimized. DAH has a high image retrieval precision: We thoroughly compare it with ten state-of-the-art approaches on the CIFAR-10 dataset. The results show that the Mean Average Precision (MAP) of DAH reaches more than 92% in terms of 12, 24, 36 and 48 bit hash codes on CIFAR-10, which is better than what the state-of- art methods used for comparison can deliver.
引用
收藏
页码:142229 / 142242
页数:14
相关论文
共 50 条
  • [41] A Survey on Attention-Based Models for Image Captioning
    Osman, Asmaa A. E.
    Shalaby, Mohamed A. Wahby
    Soliman, Mona M.
    Elsayed, Khaled M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 403 - 412
  • [42] Ensemble learning framework for image retrieval via deep hash ranking
    Li, Donggen
    Dai, Dawei
    Chen, Jiancu
    Xia, Shuyin
    Wang, Guoyin
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [43] Fabric Image Retrieval System Using Hierarchical Search Based on Deep Convolutional Neural Network
    Xiang, Jun
    Zhang, Ning
    Pan, Ruru
    Gao, Weidong
    IEEE ACCESS, 2019, 7 : 35405 - 35417
  • [44] Attend and Guide (AG-Net): A Keypoints-Driven Attention-Based Deep Network for Image Recognition
    Bera, Asish
    Wharton, Zachary
    Liu, Yonghuai
    Bessis, Nik
    Behera, Ardhendu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3691 - 3704
  • [45] Attention-based multiscale deep learning with unsampled pixel utilization for hyperspectral image classification
    AL-Kubaisi, Mohammed Ahmed
    Shafri, Helmi Z. M.
    Ismail, Mohd Hasmadi
    Yusof, Mohd Johari Mohd
    bin Hashim, Shaiful Jahari
    GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [46] A novel hash based feature descriptors for content based image retrieval in large database
    Lalitha, K.
    Murugavalli, S.
    Roseline, A. Ameelia
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 9955 - 9964
  • [47] Attention-Based Adaptive SpectralSpatial Kernel ResNet for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Manna, Suvojit
    Song, Tiecheng
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7831 - 7843
  • [48] Deep spatial attention hashing network for image retrieval
    Ge, Lin-Wei
    Zhang, Jun
    Xia, Yi
    Chen, Peng
    Wang, Bing
    Zheng, Chun-Hou
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 63
  • [49] Deep attention sampling hashing for efficient image retrieval
    Feng, Hao
    Wang, Nian
    Zhao, Fa
    Huo, Wei
    NEUROCOMPUTING, 2023, 559
  • [50] Image Retrieval Based on Saliency Attention
    Wen, Zhenkun
    Gao, Jinhua
    Luo, Ruijie
    Wu, Huisi
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISKE 2013), 2014, 277 : 177 - 188