Existence of positive periodic solutions for a neutral Lienard equation with a singularity of repulsive type

被引:6
作者
Lu, Shiping [1 ]
Yu, Xingchen [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
关键词
Neutral functional differential equation; periodic solution; singularity; continuation theorem; 2ND-ORDER DIFFERENTIAL-EQUATIONS; MULTIPLICITY; SYSTEM;
D O I
10.1007/s11784-019-0669-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The periodic problem is studied in this paper for the neutral Lienard equation with a singularity of repulsive type (x(t) - cx (t - sigma))'' + f(x(t))x'(t) + phi(t)x(t - tau) - r(t)/x mu(t) = h(t), where f : [0, +infinity -> R is continuous, r : R -> (0, +infinity) and phi : R -> Rare continuous with T-periodicity in the t variable, c,mu,sigma,tau are constants with vertical bar c vertical bar > 1, mu > 1, 0 < sigma, tau < T.Many authors obtained the existence of periodic solutions under the condition |c| > 1.The proof of the main result relies on a continuation theorem of coincidence degree theory established by Mawhin.
引用
收藏
页数:15
相关论文
共 28 条
[1]  
Bevc V., 1958, J BRIT I RADIO ENG, V18, P696
[2]   Periodic solutions of second order non-autonomous singular dynamical systems [J].
Chu, Jifeng ;
Torres, Pedro J. ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (01) :196-212
[3]  
Gaines R. E., 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[4]   On the open problems connected to the results of Lazer and Solimini [J].
Hakl, Robert ;
Zamora, Manuel .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (01) :109-118
[5]   Periodic solutions of singular second order differential equations: Upper and lower functions [J].
Hakl, Robert ;
Torres, Pedro J. ;
Zamora, Manuel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) :7078-7093
[6]  
Hale JK., 1991, Dynamics and Bifurcations, DOI DOI 10.1007/978-1-4612-4342-7
[7]   Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response [J].
Huang, Jicai ;
Ruan, Shigui ;
Song, Jing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) :1721-1752
[8]  
Jebelean P, 2002, ADV NONLINEAR STUD, V2, P299
[9]   Multiplicity of positive periodic solutions to superlinear repulsive singular equations [J].
Jiang, DQ ;
Chu, JF ;
Zhang, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 211 (02) :282-302
[10]  
Kong F., 2015, ELECTRON J DIFFER EQ, V242, P1