Structure and Mechanism of Copper- and Nickel-Substituted Analogues of Metallo-β-lactamase L1

被引:19
|
作者
Hu, Zhenxin [1 ]
Spadafora, Lauren J. [1 ]
Hajdin, Christine E. [1 ]
Bennett, Brian [2 ]
Crowder, Michael W. [1 ]
机构
[1] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA
[2] Med Coll Wisconsin, Dept Biophys, Natl Biomed EPR Ctr, Milwaukee, WI 53226 USA
基金
美国国家卫生研究院;
关键词
SITE-DIRECTED MUTAGENESIS; STENOTROPHOMONAS-MALTOPHILIA; AEROMONAS-PROTEOLYTICA; GLYOXALASE-II; BACTEROIDES-FRAGILIS; MOLECULAR-STRUCTURE; SUBSTRATE-BINDING; ACTIVE-SITES; IN-VIVO; AMINOPEPTIDASE;
D O I
10.1021/bi802295z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In an effort to further probe metal binding to metallo-beta-lactamase L1 (m beta 1 L1), Cu- (Cu-L1) and Ni-substituted (Ni-L1) L1 were prepared and characterized by kinetic and spectroscopic studies. Cu-L1 bound 1.7 equiv of Cu and small amounts of Zn(II) and Fe. The EPR spectrum of Cu-L1 exhibited two overlapping, axial signals, indicative of type 2 sites with distinct affinities for Cu(II). Both. signals indicated multiple nitrogen ligands. Despite the expected proximity of the Cu(II) ions, however, only indirect evidence was found for spin-spin coupling. Cu-L1 exhibited higher k(cat) (96 s(-1)) and K-m (224 mu M) values, as compared to the values of dinuclear Zn(II)-containing L1, when nitrocefin was used as substrate. The Ni-L1 bound 1 equiv of Ni and 0.3 equiv of Zn(II). Ni-L1 was EPR-silent, suggesting that the oxidation state of nickel was +2; this suggestion was confirmed by H-1 NMR spectra, which showed relatively sharp proton resonances. Stopped-flow kinetic studies showed that ZnNi-L1 stabilized significant amounts of the nitrocefin-derived intermediate and that the decay of intermediate is rate-limiting. H-1 NMR spectra demonstrate that Ni(II) binds in the Zn-2 site and that the ring-opened product coordinates Ni(II). Both Cu-L1 and ZnNi-L1 hydrolyze cephalosporins and carbapenems, but not penicillins, suggesting that the Zn-2 site modulates substrate preference in m beta 1 L1. These studies demonstrate that the Zn-2 site in L1 is very flexible and can accommodate a number of different transition metal ions; this flexibility could possibly offer an organism that produces L1 an evolutionary advantage when challenged with beta-lactam-containing antibiotics.
引用
收藏
页码:2981 / 2989
页数:9
相关论文
共 50 条
  • [21] Carbamylmethyl Mercaptoacetate Thioether: A Novel Scaffold for the Development of L1 Metallo-β-lactamase Inhibitors
    Chang, Ya-Nan
    Xiang, Yang
    Zhang, Yue-Juan
    Wang, Wen-Ming
    Chen, Cheng
    Oelschlaeger, Peter
    Yang, Ke-Wu
    ACS MEDICINAL CHEMISTRY LETTERS, 2017, 8 (05): : 527 - 532
  • [22] Role of the Zn1 and Zn2 sites in Metallo-β-lactamase L1
    Hu, Zhenxin
    Periyannan, Gopalraj
    Bennett, Brian
    Crowder, Michael W.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (43) : 14207 - 14216
  • [23] Exploring antibiotic resistant mechanism by microcalorimetryDetermination of thermokinetic parameters of metallo-β-lactamase L1 catalyzing penicillin G hydrolysis
    Hui-Zhou Gao
    Qi Yang
    Xiao-Yan Yan
    Zhu-Jun Wang
    Ji-Li Feng
    Xia Yang
    Sheng-Li Gao
    Lei Feng
    Xu Cheng
    Chao Jia
    Ke-Wu Yang
    Journal of Thermal Analysis and Calorimetry, 2012, 107 (1) : 321 - 324
  • [24] The problem of a solvent exposable disulfide when preparing Co(II)-substituted metallo-β-lactamase L1 from Stenotrophomonas maltophilia
    Crowder, MW
    Yang, KW
    Carenbauer, AL
    Periyannan, G
    Seifert, ME
    Rude, NE
    Walsh, TR
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2001, 6 (01): : 91 - 99
  • [25] The problem of a solvent exposable disulfide when preparing Co(II)-substituted metallo-β-lactamase L1 from Stenotrophomonas maltophilia
    Michael W. Crowder
    Ke-Wu Yang
    Anne L. Carenbauer
    Gopal Periyannan
    Mary E. Seifert
    Nathan E. Rude
    Timothy R. Walsh
    JBIC Journal of Biological Inorganic Chemistry, 2001, 6 : 91 - 99
  • [26] Probing substrate binding to the metal binding sites in metallo-β-lactamase L1 during catalysis
    Aitha, Mahesh
    Al-Abdul-Wahid, Sameer
    Tierney, David L.
    Crowder, Michael W.
    MEDCHEMCOMM, 2016, 7 (01) : 194 - 201
  • [27] Revealing electronic features governing hydrolysis of cephalosporins in the active site of the L1 metallo-β-lactamase
    Levina, Elena O.
    Khrenova, Maria G.
    Astakhov, Andrey A.
    Tsirelson, Vladimir G.
    RSC ADVANCES, 2020, 10 (15) : 8664 - 8676
  • [28] Gating interactions steer loop conformational changes in the active site of the L1 metallo-β-lactamase
    Zhao, Zhuoran
    Shen, Xiayu
    Chen, Shuang
    Gu, Jing
    Wang, Haun
    Mojica, Maria F.
    Samanta, Moumita
    Bhowmik, Debsindhu
    Vila, Alejandro J.
    Bonomo, Robert A.
    Haider, Shozeb
    ELIFE, 2023, 12
  • [29] Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase
    Softley, Charlotte A.
    Zak, Krzysztof M.
    Bostock, Mark J.
    Fino, Roberto
    Zhou, Richard Xu
    Kolonko, Marta
    Mejdi-Nitiu, Ramona
    Meyer, Hannelore
    Sattler, Michael
    Popowicz, Grzegorz M.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2020, 64 (06)
  • [30] Amino Acid Thioester Derivatives: A Highly Promising Scaffold for the Development of Metallo-β-lactamase L1 Inhibitors
    Liu, Xiao-Long
    Shi, Ying
    Kang, Joon S.
    Oelschlaeger, Peter
    Yang, Ke-Wu
    ACS MEDICINAL CHEMISTRY LETTERS, 2015, 6 (06): : 660 - 664