The number of configurations in lattice point counting II

被引:4
作者
Huxley, M. N. [1 ]
Zunic, Jovisa [2 ,3 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
[2] Univ Exeter, Dept Comp Sci, Exeter EX4 4QF, Devon, England
[3] Serbian Acad Arts & Sci, Math Inst, Belgrade, Serbia
关键词
DISCS;
D O I
10.1112/plms/pdt011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A convex plane set S is discretized by first mapping the centre of S to a point (u, v), preserving orientation, enlarging by a factor t to obtain the image S(t, u, v) and then taking the discrete set J(t, u, v) of integer points in S(t, u, v). Let N(t, u, v) be the size of the 'configuration' J(t, u, v). Let L(N) be the number of different configurations (up to equivalence by translation) of size N(t, u, v) = N and let M(N) be the number of different configurations with 1 < N(t, u, v) < N. Then L(N) < 2N-1, M(N) < N-2, with equality if S satisfies the Quadrangle Condition, that no image S(t, u, v) has four or more integer points on the boundary. For the circle, which does not satisfy the Quadrangle Condition, we expect that L(N) should be asymptotic to 2N, despite the numerical evidence.
引用
收藏
页码:1331 / 1352
页数:22
相关论文
共 14 条
[1]   THE NUMBER OF INTEGRAL POINTS ON ARCS AND OVALS [J].
BOMBIERI, E ;
PILA, J .
DUKE MATHEMATICAL JOURNAL, 1989, 59 (02) :337-357
[2]  
Gauss CF., 1876, WERKE, V2, P269
[3]  
HARDY GH, 1959, INTRO THEORY NUMBERS
[4]  
Huxley M. N., 1996, Area, Lattice points, and Exponential sums, V13
[5]   The number of N-point digital discs [J].
Huxley, Martin N. ;
Zunic, Jovisa .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (01) :159-161
[6]   The number of configurations in lattice point counting I [J].
Huxley, Martin N. ;
Zunic, Jovisa .
FORUM MATHEMATICUM, 2010, 22 (01) :127-152
[7]   THE INTEGER POINTS IN A PLANE CURVE [J].
Huxley, Martin N. .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2007, 37 (01) :213-231
[8]   Different digitisations of displaced discs [J].
Huxley, MN ;
Zunic, J .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (02) :255-268
[9]   Exponential sums and lattice points III [J].
Huxley, MN .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 :591-609
[10]  
Huxley MN, 1999, NUMBER THEORY IN PROGRESS, VOLS 1 AND 2, P911