A generalized Block FSAI preconditioner for nonsymmetric linear systems

被引:24
作者
Ferronato, Massimiliano [1 ]
Janna, Carlo [1 ]
Pini, Giorgio [1 ]
机构
[1] Univ Padua, Dept ICEA, I-35121 Padua, Italy
关键词
Parallel preconditioning; Factorized approximate inverse; Unsymmetric matrices; EFFICIENT PARALLEL SOLUTION; SPARSITY PATTERNS; INVERSE; SIMULATIONS; SOLVERS; ILU;
D O I
10.1016/j.cam.2013.07.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The efficient solution to nonsymmetric linear systems is still an open issue, especially on parallel computers. In this paper we generalize to the unsymmetric case the Block Factorized Sparse Approximate Inverse (Block FSAI) preconditioner which has already proved very effective on symmetric positive definite (SPD) problems. Block FSAlis a hybrid approach combining an "inner" preconditioner, with the aim of transforming the system matrix structure to block diagonal, with an "outer" one, a block diagonal incomplete or exact factorization intended to improve the conditioning of each block. The proposed algorithm is experimented with in a number of large size matrices showing both a good robustness and scalability. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 241
页数:12
相关论文
共 41 条
[1]   A parallel solver for large-scale Markov chains [J].
Benzi, M ;
Tuma, M .
APPLIED NUMERICAL MATHEMATICS, 2002, 41 (01) :135-153
[2]   A sparse approximate inverse preconditioner for nonsymmetric linear systems [J].
Benzi, M ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :968-994
[3]  
Bergamaschi L, 2005, LECT NOTES COMPUT SC, V3402, P623
[4]   FSAI-based parallel Mixed Constraint Preconditioners for saddle point problems arising in geomechanics [J].
Bergamaschi, Luca ;
Martinez, Angeles .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (03) :308-318
[5]   TOWARDS ADAPTIVE SMOOTHED AGGREGATION (αSA) FOR NONSYMMETRIC PROBLEMS [J].
Brezina, M. ;
Manteuffel, T. ;
McCormick, S. ;
Ruge, J. ;
Sanders, G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01) :14-39
[6]   A priori sparsity patterns for parallel sparse approximate inverse preconditioners [J].
Chow, E .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05) :1804-1822
[7]  
Cuthill E., 1969, P 1969 24 NAT C, P157, DOI [DOI 10.1145/800195.805928, 10.1145/800195.805928]
[8]   The University of Florida Sparse Matrix Collection [J].
Davis, Timothy A. ;
Hu, Yifan .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01)
[9]   GPU computing with Kaczmarz's and other iterative algorithms for linear systems [J].
Elble, Joseph M. ;
Sahinidis, Nikolaos V. ;
Vouzis, Panagiotis .
PARALLEL COMPUTING, 2010, 36 (5-6) :215-231
[10]   Shifted FSAI preconditioners for the efficient parallel solution of non-linear groundwater flow models [J].
Ferronato, M. ;
Janna, C. ;
Pini, G. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (13) :1707-1719