An Effective Pulse-Shaping Technique for Testing Stainless Steel Alloys in a Split-Hopkinson Pressure Bar

被引:11
作者
Ameri, A. A. H. [1 ]
Brown, A. D. [2 ]
Ashraf, M. [3 ]
Hazell, P. J. [1 ]
Quadir, Md. Z. [4 ]
Escobedo-Diaz, J. P. [1 ]
机构
[1] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[2] US Army, Soldier Protect Sci Branch, Res Lab, RDRL WMP B, Aberdeen Proving Ground, MD 21005 USA
[3] Deakin Univ, Sch Engn, Geelong Waurn Ponds, Vic 3216, Australia
[4] Curtin Univ, John de Laeter Ctr JdLC, Microscopy & Microanal Facil MMF, Perth, WA 6102, Australia
关键词
Austenitic stainless steel; Finite element analysis; Lean duplex stainless steel; Pulse shaping; Split-hopkinson pressure bar; Strain-hardening; HIGH-STRAIN-RATE; STRESS; DEFORMATION; RATES;
D O I
10.1007/s40870-019-00181-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Pulse shaping techniques are an integral component of designing and executing valid Split-hopkinson pressure bar (SHPB) experiments. Proper pulse shaping is vital for achieving stress equilibrium and a constant strain rate within the dynamically tested sample. A systematic method based on two-dimensional finite element (FE) analysis was developed to design an optimized single material pulse shaper for SHPB testing of two stainless steel alloys. The tested alloys exhibit high strain-hardening, but have significantly different mechanical properties: Lean Duplex Stainless Steel 2101 (LDSS 2101) and austenitic stainless steel 316L. Results show that pulse shapers made of LDSS 2101 are capable of satisfying stress equilibrium and constant strain rate conditions for the studied materials at different strain rates regimes. The outlined FE analysis workflow is an effective approach to define the optimal dimensions of pulse shapers without the need for costly pulse-shaper-development experimental trials.
引用
收藏
页码:39 / 50
页数:12
相关论文
共 31 条
[1]   Strain Rate Effect on the Mechanical Response of Duplex Stainless Steel [J].
Ameri, A. A. H. ;
Escobedo-Diaz, J. P. ;
Quadir, Md. Z. ;
Ashraf, M. ;
Hutchison, W. .
SHOCK COMPRESSION OF CONDENSED MATTER - 2017, 2018, 1979
[2]   General methodology to estimate the dislocation density from microhardness measurements [J].
Ameri, Ali A. H. ;
Elewa, Nancy N. ;
Ashraf, Mahmud ;
Escobedo-Diaz, Juan P. .
MATERIALS CHARACTERIZATION, 2017, 131 :324-330
[3]  
[Anonymous], 2012, ANSYS MECH APDL ADV
[4]  
[Anonymous], 1994, Dynamic Behavior of Materials, P66, DOI DOI 10.1002/9780470172278
[5]   Numerical study for determination of pulse shaping design variables in SHPB apparatus [J].
Baranowski, P. ;
Malachowski, J. ;
Gieleta, R. ;
Damaziak, K. ;
Mazurkiewicz, L. ;
Kolodziejczyk, D. .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2013, 61 (02) :459-466
[6]   Microstructural changes and in-situ observation of localization in OFHC copper under dynamic loading [J].
Bodelot, Laurence ;
Escobedo-Diaz, Juan P. ;
Trujillo, Carl P. ;
Martinez, Daniel T. ;
Cerreta, Ellen K. ;
Gray, George T., III ;
Ravichandran, Guruswami .
INTERNATIONAL JOURNAL OF PLASTICITY, 2015, 74 :58-74
[7]  
Chen WNW, 2011, MECH ENG SER, P1, DOI 10.1007/978-1-4419-7982-7
[8]   Intragranular void formation in shock-spalled tantalum: Mechanisms and governing factors [J].
Cheng, M. ;
Li, C. ;
Tang, M. X. ;
Lu, L. ;
Li, Z. ;
Luo, S. N. .
ACTA MATERIALIA, 2018, 148 :38-48
[9]   Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone [J].
Cloete, T. J. ;
Paul, G. ;
Ismail, E. B. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2015)
[10]   MATERIALS TESTING AT HIGH CONSTANT STRAIN RATES [J].
ELLWOOD, S ;
GRIFFITHS, LJ ;
PARRY, DJ .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1982, 15 (03) :280-282