Multiple classifier system for EEG signal classification with application to brain-computer interfaces

被引:53
作者
Ahangi, Amir [1 ]
Karamnejad, Mehdi [1 ]
Mohammadi, Nima [1 ]
Ebrahimpour, Reza [1 ,2 ]
Bagheri, Nasoor [1 ]
机构
[1] SRTTU, Dept Elect & Comp Engn, Brain Intelligent & Syst Res Lab BISLAB, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, SCS, Tehran, Iran
关键词
EEG classification; Motor imagery; Wavelet feature extraction; Feature selection; Multiple classifier system (MCS); FEATURE-EXTRACTION; MIXTURE; RECOGNITION; SELECTION; PATIENT;
D O I
10.1007/s00521-012-1074-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we demonstrate the use of a multiple classifier system for classification of electroencephalogram (EEG) signals. The main purpose of this paper is to apply several approaches to classify motor imageries originating from the brain in a more robust manner. For this study, dataset II from BCI competition III was used. To extract features from the brain signal, discrete wavelet transform decomposition was used. Then, several classic classifiers were implemented to be utilized in the multiple classifier system, which outperforms the reported results of other proposed methods on the dataset. Also, a variety of classifier combination methods along with genetic algorithm feature selection were evaluated and compared in order to diminish classification error. Our results suggest that an ensemble system can be employed to boost EEG classification accuracy.
引用
收藏
页码:1319 / 1327
页数:9
相关论文
共 46 条
[21]  
Keng Ang K, 2009, INT C IEEE ENG MED B
[22]   GENETIC ALGORITHM FOR FEATURE-SELECTION FOR PARALLEL CLASSIFIERS [J].
KUNCHEVA, L .
INFORMATION PROCESSING LETTERS, 1993, 46 (04) :163-168
[23]   Decision templates for multiple classifier fusion: an experimental comparison [J].
Kuncheva, LI ;
Bezdek, JC ;
Duin, RPW .
PATTERN RECOGNITION, 2001, 34 (02) :299-314
[24]   Brain-machine interfaces: past, present and future [J].
Lebedev, Mikhail A. ;
Nicolelis, Miguel A. L. .
TRENDS IN NEUROSCIENCES, 2006, 29 (09) :536-546
[25]   A brain-computer interface using electrocorticographic signals in humans [J].
Leuthardt, Eric C. ;
Schalk, Gerwin ;
Wolpaw, Jonathan R. ;
Ojemann, Jeffrey G. ;
Moran, Daniel W. .
JOURNAL OF NEURAL ENGINEERING, 2004, 1 (02) :63-71
[26]   Mu and beta rhythm topographies during motor imagery and actual movements [J].
McFarland, DJ ;
Miner, LA ;
Vaughan, TM ;
Wolpaw, JR .
BRAIN TOPOGRAPHY, 2000, 12 (03) :177-186
[27]   Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges [J].
Millan, J. D. R. ;
Rupp, R. ;
Mueller-Putz, G. R. ;
Murray-Smith, R. ;
Giugliemma, C. ;
Tangermann, M. ;
Vidaurre, C. ;
Cincotti, F. ;
Kubler, A. ;
Leeb, R. ;
Neuper, C. ;
Mueller, K. -R. ;
Mattia, D. .
FRONTIERS IN NEUROSCIENCE, 2010, 4
[28]   Clinical application of an EEG-based brain-computer interface:: a case study in a patient with severe motor impairment [J].
Neuper, C ;
Müller, GR ;
Kübler, A ;
Birbaumer, N ;
Pfurtscheller, G .
CLINICAL NEUROPHYSIOLOGY, 2003, 114 (03) :399-409
[29]  
Niedermeyer E., 2005, Electroencephalography: basic principles, clinical applications
[30]   Information transfer rate in a five-classes brain-computer interface [J].
Obermaier, B ;
Neuper, C ;
Guger, C ;
Pfurtscheller, G .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2001, 9 (03) :283-288