Transcriptome Analysis Revealed Potential Mechanisms of Resistance to Trichomoniasis gallinae Infection in Pigeon (Columba livia)

被引:4
作者
Yuan, Jingwei [1 ]
Ni, Aixin [1 ]
Li, Yunlei [1 ]
Bian, Shixiong [1 ]
Liu, Yunjie [1 ]
Wang, Panlin [1 ]
Shi, Lei [1 ]
Isa, Adamu Mani [1 ,2 ]
Ge, Pingzhuang [1 ]
Sun, Yanyan [1 ]
Ma, Hui [1 ]
Chen, Jilan [1 ]
机构
[1] China Acad Agr Sci, Inst Anim Sci, Beijing, Peoples R China
[2] Usmanu Danfodiyo Univ, Dept Anim Sci, Sokoto, Nigeria
基金
中国国家自然科学基金;
关键词
pigeon; Trichomoniasis gallinae resistance; long non-coding RNA; mRNA; differential expression analysis; LONG NONCODING RNAS; GENOME; ASSOCIATION; ANNOTATION; MODULATION; EXPRESSION; HISAT; HOST;
D O I
10.3389/fvets.2021.672270
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Trichomoniasis gallinae (T. gallinae) is one of the most pathogenic parasites in pigeon, particularly in squabs. Oral cavity is the main site for the host-parasite interaction. Herein, we used RNA-sequencing technology to characterize lncRNA and mRNA profiles and compared transcriptomic dynamics of squabs, including four susceptible birds (S) from infected group, four tolerant birds (T) without parasites after T. gallinae infection, and three birds from uninfected group (N), to understand molecular mechanisms underlying host resistance to this parasite. We identified 29,809 putative IncRNAs and characterized their genomic features subsequently. Differentially expressed (DE) genes, DE-lncRNAs and cis/trans target genes of DE-lncRNAs were further compared among the three groups. The KEGG analysis indicated that specific intergroup DEGs were involved in carbon metabolism (S vs. T), metabolic pathways (N vs. T) and focal adhesion pathway (N vs. S), respectively. Whereas, the cis/trans genes of DE-lncRNAs were enriched in cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, p53 signaling pathway and insulin signaling pathway, which play crucial roles in immune system of the host animal. This suggests T. gallinae invasion in pigeon mouth may modulate lncRNAs expression and their target genes. Moreover, co-expression analysis identified crucial lncRNA-mRNA interaction networks. Several DE-lncRNAs including MSTRG.82272.3, MSTRG.114849.42, MSTRG.39405.36, MSTRG.3338.5, and MSTRG.105872.2 targeted methylation and immune-related genes, such as JCHAIN, IL18BP, ANGPT1, TMRT10C, SAMD9L, and SOCS3. This implied that DElncRNAs exert critical influence on T. gallinae infections. The quantitative exploration of host transcriptome changes induced by T. gallinae infection broaden both transcriptomic and epigenetic insights into T. gallinae resistance and its pathological mechanism.
引用
收藏
页数:14
相关论文
共 62 条
[1]   Long Noncoding RNAs in Host-Pathogen Interactions [J].
Agliano, Federica ;
Rathinam, Vijay A. ;
Medvedev, Andrei E. ;
Vanaja, Sivapriya Kailasan ;
Vella, Anthony T. .
TRENDS IN IMMUNOLOGY, 2019, 40 (06) :492-510
[2]   Unique substrate specificity of ornithine aminotransferase from Toxoplasma gondii [J].
Astegno, Alessandra ;
Maresi, Elena ;
Bertoldi, Mariarita ;
La Verde, Valentina ;
Paiardini, Alessandro ;
Dominici, Paola .
BIOCHEMICAL JOURNAL, 2017, 474 :939-955
[3]   Evolutionary Origins of Toll-like Receptor Signaling [J].
Brennan, Joseph J. ;
Gilmore, Thomas D. .
MOLECULAR BIOLOGY AND EVOLUTION, 2018, 35 (07) :1576-1587
[4]   Omics Approaches to Identify Potential Biomarkers of Inflammatory Diseases in the Focal Adhesion Complex [J].
Brooks, Johanne ;
Watson, Alastair ;
Korcsmaros, Tamas .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2017, 15 (02) :101-109
[5]   Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses [J].
Cabili, Moran N. ;
Trapnell, Cole ;
Goff, Loyal ;
Koziol, Magdalena ;
Tazon-Vega, Barbara ;
Regev, Aviv ;
Rinn, John L. .
GENES & DEVELOPMENT, 2011, 25 (18) :1915-1927
[6]   Genome Wide Identification of Novel Long Non-coding RNAs and Their Potential Associations With Milk Proteins in Chinese Holstein Cows [J].
Cai, Wentao ;
Li, Cong ;
Liu, Shuli ;
Zhou, Chenghao ;
Yin, Hongwei ;
Song, Jiuzhou ;
Zhang, Qin ;
Zhang, Shengli .
FRONTIERS IN GENETICS, 2018, 9
[7]   The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression [J].
Derrien, Thomas ;
Johnson, Rory ;
Bussotti, Giovanni ;
Tanzer, Andrea ;
Djebali, Sarah ;
Tilgner, Hagen ;
Guernec, Gregory ;
Martin, David ;
Merkel, Angelika ;
Knowles, David G. ;
Lagarde, Julien ;
Veeravalli, Lavanya ;
Ruan, Xiaoan ;
Ruan, Yijun ;
Lassmann, Timo ;
Carninci, Piero ;
Brown, James B. ;
Lipovich, Leonard ;
Gonzalez, Jose M. ;
Thomas, Mark ;
Davis, Carrie A. ;
Shiekhattar, Ramin ;
Gingeras, Thomas R. ;
Hubbard, Tim J. ;
Notredame, Cedric ;
Harrow, Jennifer ;
Guigo, Roderic .
GENOME RESEARCH, 2012, 22 (09) :1775-1789
[8]   Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs in chickens during Eimeria necatrix infection [J].
Fan, Xian-Cheng ;
Liu, Ting-Li ;
Wang, Yi ;
Wu, Xue-Mei ;
Wang, Yu-Xin ;
Lai, Peng ;
Song, Jun-Ke ;
Zhao, Guang-Hui .
PARASITES & VECTORS, 2020, 13 (01)
[9]   Pfam: the protein families database [J].
Finn, Robert D. ;
Bateman, Alex ;
Clements, Jody ;
Coggill, Penelope ;
Eberhardt, Ruth Y. ;
Eddy, Sean R. ;
Heger, Andreas ;
Hetherington, Kirstie ;
Holm, Liisa ;
Mistry, Jaina ;
Sonnhammer, Erik L. L. ;
Tate, John ;
Punta, Marco .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D222-D230
[10]   Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction [J].
Foth, Bernardo J. ;
Tsai, Isheng J. ;
Reid, Adam J. ;
Bancroft, Allison J. ;
Nichol, Sarah ;
Tracey, Alan ;
Holroyd, Nancy ;
Cotton, James A. ;
Stanley, Eleanor J. ;
Zarowiecki, Magdalena ;
Liu, Jimmy Z. ;
Huckvale, Thomas ;
Cooper, Philip J. ;
Grencis, Richard K. ;
Berriman, Matthew .
NATURE GENETICS, 2014, 46 (07) :693-700