A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications

被引:65
作者
Islam, Md. Saiful [1 ]
Sultana, Jakeya [1 ,2 ]
Dinovitser, Alex [1 ]
Ng, Brian W. -H. [1 ]
Abbott, Derek [1 ]
机构
[1] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[2] Islamic Univ Technol, Dept Elect & Elect Engn, Gazipur 1704, Bangladesh
基金
澳大利亚研究理事会;
关键词
Photonic crystal fiber; Birefringence; Dispersion; Waveguide; Effective material loss; Terahertz; POLYMER OPTICAL-FIBER; POROUS FIBER; WAVE-PROPAGATION; FABRICATION; DISPERSION; TIME; SPECTROSCOPY; DESIGN;
D O I
10.1016/j.optcom.2017.12.061
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A novel waveguide consisting of oligo-porous core photonic crystal fiber (PCF) with a kagome lattice cladding has been designed for highly birefringent and near zero dispersion flattened applications of terahertz waves. The wave guiding properties of the designed PCF including birefringence, dispersion, effective material loss (EML), core power fraction, confinement loss, and modal effective area are investigated using a full vector Finite Element Method (FEM) with Perfectly Matched Layer (PML) absorbing boundary condition. Simulation results demonstrate that an ultra-high birefringence of 0.079, low EML of 0.05 cm(-1), higher core power fraction of 44% and negligible confinement loss of 7.24 x 10(-7) cm(-1) can be achieved at 1 THz. Furthermore, for the y-polarization mode a near zero flattened dispersion of 0.49 +/- 0.05 ps/THz/cm is achieved within a broad frequency range of 0.8-1.7 THz. The fabrication of the proposed fiber is feasible using the existing fabrication technology. Due to favorable wave-guiding properties, the proposed fiber has potential for terahertz imaging, sensing and polarization maintaining applications in the terahertz frequency range. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:242 / 248
页数:7
相关论文
共 50 条
[31]   High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees [J].
Markos, Christos ;
Stefani, Alessio ;
Nielsen, Kristian ;
Rasmussen, Henrik K. ;
Yuan, Wu ;
Bang, Ole .
OPTICS EXPRESS, 2013, 21 (04) :4758-4765
[32]   Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides [J].
McGowan, RW ;
Gallot, G ;
Grischkowsky, D .
OPTICS LETTERS, 1999, 24 (20) :1431-1433
[33]   Undistorted guided-wave propagation of subpicosecond terahertz pulses [J].
Mendis, R ;
Grischkowsky, D .
OPTICS LETTERS, 2001, 26 (11) :846-848
[34]   Integrated THz technology for label-free genetic diagnostics [J].
Nagel, M ;
Bolivar, PH ;
Brucherseifer, M ;
Kurz, H ;
Bosserhoff, A ;
Büttner, R .
APPLIED PHYSICS LETTERS, 2002, 80 (01) :154-156
[35]   Light confinement within nanoholes in nanostructured optical fibers [J].
Ruan, Yinlan ;
Ebendorff-Heidepriem, Heike ;
Afshar, Shahraam ;
Monro, Tanya M. .
OPTICS EXPRESS, 2010, 18 (25) :26018-26026
[36]  
Sanghera J.S., 1998, INFRARED FIBER OPTIC
[37]   Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity [J].
Strachan, CJ ;
Taday, PF ;
Newnham, DA ;
Gordon, KC ;
Zeitler, JA ;
Pepper, M ;
Rades, T .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2005, 94 (04) :837-846
[38]   Dispersion Properties of Optical Polymers [J].
Sultanova, N. ;
Kasarova, S. ;
Nikolov, I. .
ACTA PHYSICA POLONICA A, 2009, 116 (04) :585-587
[39]  
Wächter M, 2005, OPT EXPRESS, V13, P10815, DOI 10.1364/OPEX.13.010815
[40]   Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission [J].
Waechter, Markus ;
Nagel, Michael ;
Kurz, Heinrich .
APPLIED PHYSICS LETTERS, 2007, 90 (06)