Some pathological examples of solutions to a Beltrami equation

被引:0
作者
Klimentov, S. B. [1 ,2 ]
机构
[1] Southern Fed Univ, Rostov Na Donu, Russia
[2] Southern Math Inst, Vladikavkaz, Russia
关键词
Beltrami equation; Hardy class;
D O I
10.1134/S0037446616050116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an example of a bounded solution to a uniformly elliptic Beltrami equation that has no nontangential limit values almost everywhere on the boundary of the unit disk and also an example of a solution to such an equation that is not identically zero and has zero nontangential limit values almost everywhere on the boundary of the unit disk. These examples show that, in the general case of the Hardy spaces of solutions to a uniformly elliptic Beltrami equation (and to more general noncanonical first-order elliptic systems), the usual statement of boundary value problems used for holomorphic and generalized analytic functions is ill-posed.
引用
收藏
页码:824 / 829
页数:6
相关论文
共 15 条
[1]  
Agard S.B., 1965, Proceedings of the London Mathematical Society, V3, P1, DOI DOI 10.1112/PLMS/S3-14A.1.1
[2]  
Ahlfors L., 2006, LECT QUASICONFORMAL
[3]   Hardy spaces of the conjugate Beltrami equation [J].
Baratchart, Laurent ;
Leblond, Juliette ;
Rigat, Stephane ;
Russ, Emmanuel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (02) :384-427
[4]  
Belinskii PP, 1974, General Properties of Quasiconformal Maps
[5]   THE BOUNDARY CORRESPONDENCE UNDER QUASICON-FORMAL MAPPINGS [J].
BEURLING, A ;
AHLFORS, L .
ACTA MATHEMATICA, 1956, 96 (1-2) :125-142
[6]  
Boyarsky B. V., 1957, MAT SBORNIK, V43, P451
[7]  
Danilyuk I.I., 1975, Irregular boundary value problems on half plane
[8]  
Goluzin G. M., 1969, Transl. Math. Monogr., V26
[9]  
Kalyanichenko S. I, 2008, IZV VYSSH UCHEBN ZAV, P7
[10]   Representations of the "second kind" for the hardy classes of solutions to the Beltrami equation [J].
Klimentov, S. B. .
SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (02) :262-275