Immunosuppressive mechanisms for stem cell transplant survival in spinal cord injury

被引:21
作者
Antonios, Joseph P. [1 ]
Farah, Ghassan J. [2 ]
Cleary, Daniel R. [2 ]
Martin, Joel R. [2 ]
Ciacci, Joseph D. [2 ]
Pham, Martin H. [2 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA
[2] Univ Calif San Diego, Sch Med, Dept Neurosurg, San Diego, CA 92103 USA
关键词
spinal cord injury; stem cell grafts; immunosuppressants; glial scar; IMPROVE FUNCTIONAL RECOVERY; NEURAL PROGENITOR CELLS; OLIGODENDROCYTE PROGENITORS; INFLAMMATORY RESPONSE; SECONDARY INJURY; SCHWANN-CELLS; PHASE-I; MICE; NEURONS; MODEL;
D O I
10.3171/2018.12.FOCUS18589
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Spinal cord injury (SCI) has been associated with a dismal prognosis-recovery is not expected, and the most standard interventions have been temporizing measures that do little to mitigate the extent of damage. While advances in surgical and medical techniques have certainly improved this outlook, limitations in functional recovery continue to impede clinically significant improvements. These limitations are dependent on evolving immunological mechanisms that shape the cellular environment at the site of SCI. In this review, we examine these mechanisms, identify relevant cellular components, and discuss emerging treatments in stem cell grafts and adjuvant immunosuppressants that target these pathways. As the field advances, we expect that stem cell grafts and these adjuvant treatments will significantly shift therapeutic approaches to acute SCI with the potential for more promising outcomes.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 60 条
[1]   Origin of New Glial Cells in Intact and Injured Adult Spinal Cord [J].
Barnabe-Heider, Fanie ;
Goritz, Christian ;
Sabelstrom, Hanna ;
Takebayashi, Hirohide ;
Pfrieger, Frank W. ;
Meletis, Konstantinos ;
Frisen, Jonas .
CELL STEM CELL, 2010, 7 (04) :470-482
[2]   Large-Scale Chondroitin Sulfate Proteoglycan Digestion with Chondroitinase Gene Therapy Leads to Reduced Pathology and Modulates Macrophage Phenotype following Spinal Cord Contusion Injury [J].
Bartus, Katalin ;
James, Nicholas D. ;
Didangelos, Athanasios ;
Bosch, Karen D. ;
Verhaagen, Joost ;
Yanez-Munoz, Rafael J. ;
Rogers, John H. ;
Schneider, Bernard L. ;
Muir, Elizabeth M. ;
Bradbury, Elizabeth J. .
JOURNAL OF NEUROSCIENCE, 2014, 34 (14) :4822-4836
[3]  
Cajal S, 1959, DEGENERATION REGENER, V1
[4]   Altered default mode and fronto-parietal network subsystems in patients with schizophrenia and their unaffected siblings [J].
Chang, Xiao ;
Shen, Hui ;
Wang, Lubin ;
Liu, Zhening ;
Xin, Wei ;
Hu, Dewen ;
Miao, Danmin .
BRAIN RESEARCH, 2014, 1562 :87-99
[5]   Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm [J].
Cloutier, Frank ;
Siegenthaler, Monica M. ;
Nistor, Gabriel ;
Keirstead, Hans S. .
REGENERATIVE MEDICINE, 2006, 1 (04) :469-479
[6]   A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury [J].
Curtis, Erik ;
Martin, Joel R. ;
Gabel, Brandon ;
Sidhu, Nikki ;
Rzesiewicz, Teresa K. ;
Mandeville, Ross ;
Van Gorp, Sebastiaan ;
Leerink, Marjolein ;
Tadokoro, Takahiro ;
Marsala, Silvia ;
Jamieson, Catriona ;
Marsala, Martin ;
Ciacci, Joseph D. .
CELL STEM CELL, 2018, 22 (06) :941-+
[7]   AXONAL ELONGATION INTO PERIPHERAL NERVOUS-SYSTEM BRIDGES AFTER CENTRAL NERVOUS-SYSTEM INJURY IN ADULT-RATS [J].
DAVID, S ;
AGUAYO, AJ .
SCIENCE, 1981, 214 (4523) :931-933
[8]   Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury [J].
Donnelly, Dustin J. ;
Popovich, Phillip G. .
EXPERIMENTAL NEUROLOGY, 2008, 209 (02) :378-388
[9]   Endogenous neurogenesis in adult mammals after spinal cord injury [J].
Duan, Hongmei ;
Song, Wei ;
Zhao, Wen ;
Gao, Yudan ;
Yang, Zhaoyang ;
Li, Xiaoguang .
SCIENCE CHINA-LIFE SCIENCES, 2016, 59 (12) :1313-1318
[10]  
Edgerton VR, 2011, EXPERT REV NEUROTHER, V11, P1351, DOI [10.1586/ern.11.129, 10.1586/ERN.11.129]