Regional and global modeling of aerosol optical properties with a size, composition, and mixing state resolved particle microphysics model

被引:44
作者
Yu, F. [1 ]
Luo, G. [1 ]
Ma, X. [1 ]
机构
[1] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA
基金
美国国家科学基金会;
关键词
BLACK CARBON; NUMBER; CONDENSATION; SIMULATION; NUCLEATION; ATMOSPHERE; AERONET; MODULE; LAND; APM;
D O I
10.5194/acp-12-5719-2012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
There exist large uncertainties in the present modeling of physical, chemical, and optical properties of atmospheric particles. We have recently incorporated an advanced particle microphysics (APM) model into a global chemistry transport model (GEOS-Chem) and a regional weather forecasting and chemistry model (WRF-Chem). Here we develop a scheme for calculating regional and global aerosol optical depth (AOD) from detailed aerosol information resolved by the APM model. According to GEOS-Chem-APM simulations, in most parts of the globe, the mass of secondary species resides mainly within secondary particles (60-90%), but in certain regions a large fraction (up to 50-80%) can become coated on various primary particles. Secondary species coated on black carbon and primary organic carbon particles significantly increase the size and hygroscopicity of these particles and thus impact their optical properties. The GEOS-Chem-APM model captures the global spatial distributions of AOD derived from AERONET, MODIS, and MISR measurements, generally within a factor of similar to 2. Our analysis indicates that modeled annual mean AODs at all sky and clear sky conditions differ by similar to 20% globally averaged and by > 50% in some regions. The time series of WRF-Chem-APM predicted AOD over the northeastern United States in June 2008 have been compared to those from seven AERONET sites. Overall, the model mostly captures the absolute values as well as the variations of AOD at the AERONET sites (including dramatic changes associated with the crossing of high AOD plumes). Both GEOS-Chem and WRF-Chem simulations indicate that AOD over the northeastern US is dominated by secondary particles and have large spatiotemporal variations.
引用
收藏
页码:5719 / 5736
页数:18
相关论文
共 39 条
[1]   ABSORPTION OF VISIBLE RADIATION IN ATMOSPHERE CONTAINING MIXTURES OF ABSORBING AND NON-ABSORBING PARTICLES [J].
ACKERMAN, TP ;
TOON, OB .
APPLIED OPTICS, 1981, 20 (20) :3661-3668
[2]   Brown carbon spheres in East Asian outflow and their optical properties [J].
Alexander, Duncan T. L. ;
Crozier, Peter A. ;
Anderson, James R. .
SCIENCE, 2008, 321 (5890) :833-836
[3]  
[Anonymous], 2009, ATMOSPHERIC AEROSOL
[4]   Development of an online radiative module for the computation of aerosol optical properties in 3-D atmospheric models: validation during the EUCAARI campaign [J].
Aouizerats, B. ;
Thouron, O. ;
Tulet, P. ;
Mallet, M. ;
Gomes, L. ;
Henzing, J. S. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2010, 3 (02) :553-564
[5]   Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data [J].
Balkanski, Y. ;
Schulz, M. ;
Claquin, T. ;
Guibert, S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 :81-95
[6]   MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models [J].
Bauer, S. E. ;
Wright, D. L. ;
Koch, D. ;
Lewis, E. R. ;
McGraw, R. ;
Chang, L. -S. ;
Schwartz, S. E. ;
Ruedy, R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (20) :6003-6035
[7]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[8]   Limitations in the enhancement of visible light absorption due to mixing state [J].
Bond, Tami C. ;
Habib, Gazala ;
Bergstrom, Robert W. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D20)
[9]   Global distribution and climate forcing of carbonaceous aerosols [J].
Chung, SH ;
Seinfeld, JH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D19) :AAC14-1
[10]   ISORROPIA II:: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-Nh4+-Na+-SO42--NO3--Cl--H2O aerosols [J].
Fountoukis, C. ;
Nenes, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (17) :4639-4659