PARABOLICITY OF SPACELIKE HYPERSURFACES IN GENERALIZED ROBERTSON-WALKER SPACETIMES. APPLICATIONS TO UNIQUENESS RESULTS

被引:10
作者
Romero, A. [1 ]
Rubio, R. M. [2 ]
Salamanca, J. J. [2 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Cordoba, Dept Matemat, E-14071 Cordoba, Spain
关键词
Maximal hypersurface; generalized Robertson-Walker spacetime; parabolic Riemannian manifold; Calabi-Bernstein problem; RIEMANNIAN-MANIFOLDS;
D O I
10.1142/S0219887813600141
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study non-compact complete spacelike hypersurfaces in generalized Robertson-Walker spacetimes of arbitrary dimension whose fiber is parabolic. Under boundedness assumptions on the warping function restricted on a spacelike hypersurface and on the hyperbolic angle of the hypersurface, we prove that a complete spacelike hypersurface is parabolic if the Riemannian universal covering of the fiber is so. As an application of this new technique, several uniqueness results on complete maximal spacelike hypersurfaces are obtained. Also, the corresponding Calabi-Bernstein problems are solved.
引用
收藏
页数:8
相关论文
共 6 条
[1]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[2]   Uniqueness of maximal surfaces in Generalized Robertson-Walker spacetimes and Calabi-Bernstein type problems [J].
Caballero, Magdalena ;
Romero, Alfonso ;
Rubio, Rafael M. .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (03) :394-402
[3]   Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds [J].
Grigor'yan, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (02) :135-249
[5]  
Li P., 2000, SURVEYS DIFFERENTIAL, VII, P375, DOI DOI 10.4310/SDG.2002.V7.N1.A13
[6]  
Romero A., CLASS QUANT IN PRESS