Model Predictive PseudoSpectral Optimal Control with Semi-Parametric Dynamics

被引:0
作者
Gandhi, Manan [1 ]
Saigol, Kamil [2 ]
Pan, Yunpeng [2 ]
Theodorou, Evangelos [1 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Inst Robot & Intelligent Machines, Atlanta, GA 30332 USA
来源
2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) | 2017年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory optimization of a controlled dynamical system is an essential part of autonomy, however many trajectory optimization techniques are limited by the fidelity of the underlying parametric model. In the field of robotics, a lack of model knowledge can be overcome with machine learning techniques by utilizing measurements to build a dynamical model from the data. This paper aims to take the middle ground between these two approaches by introducing a semi-parametric representation of the underlying system dynamics. Our goal is to leverage the considerable information contained in a traditional physics based model and combine it with a data-driven, non-parametric regression technique known as a Gaussian Process. Integrating this semi-parametric model with PseudoSpectral Optimal Control (PSOC), we demonstrate model learning in an episodic and receding horizon fashion. In order to manage parametric uncertainty, we introduce an algorithm that utilizes Sparse Spectrum Gaussian Processes (SSGP) for incremental learning after each rollout. The goal of this paper is to motivate and demonstrate the constrained optimization techniques with semi-parametric models for online learning.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
[21]   A semi-parametric regression model with errors in variables [J].
Zhu, LX ;
Cui, HJ .
SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (02) :429-442
[22]   A semi-parametric mixture model in fertility studies [J].
Zhou, HB ;
Weinberg, CR .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 75 (02) :453-462
[23]   The semi-parametric model and empirical research in CVM [J].
Ao, Chang-Lin ;
Wang, Jing ;
Gao, Qin ;
Chen, Hong-Guang .
Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2014, 34 (09) :2332-2338
[24]   Online semi-parametric learning for inverse dynamics modeling [J].
Romeres, Diego ;
Zorzi, Mattia ;
Camoriano, Raffaello ;
Chiuso, Alessandro .
2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, :2945-2950
[25]   Optimal estimating function for estimation and prediction in semi-parametric models [J].
Durairajan, T. M. ;
William, Martin L. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) :3283-3292
[26]   A general hybrid semi-parametric process control framework [J].
von Stosch, Moritz ;
Oliveira, Rui ;
Peres, Joana ;
de Azevedo, Sebastiao Feyo .
JOURNAL OF PROCESS CONTROL, 2012, 22 (07) :1171-1181
[27]   ESTIMATED NON-PARAMETRIC AND SEMI-PARAMETRIC MODEL FOR LONGITUDINAL DATA [J].
AL-Adilee, Reem Tallal Kamil ;
Aboudi, Emad Hazim .
INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 :1963-1972
[28]   A semi-parametric model for lactation curves: Development and application [J].
Madouasse, A. ;
Browne, W. J. ;
Huxley, J. N. ;
Toni, F. ;
Green, M. J. .
PREVENTIVE VETERINARY MEDICINE, 2012, 105 (1-2) :38-48
[29]   A semi-parametric accelerated failure time cure model [J].
Li, CS ;
Taylor, JMG .
STATISTICS IN MEDICINE, 2002, 21 (21) :3235-3247
[30]   A Bayesian semi-parametric model for thermal proteome profiling [J].
Fang, Siqi ;
Kirk, Paul D. W. ;
Bantscheff, Marcus ;
Lilley, Kathryn S. ;
Crook, Oliver M. .
COMMUNICATIONS BIOLOGY, 2021, 4 (01)