Model Predictive PseudoSpectral Optimal Control with Semi-Parametric Dynamics

被引:0
|
作者
Gandhi, Manan [1 ]
Saigol, Kamil [2 ]
Pan, Yunpeng [2 ]
Theodorou, Evangelos [1 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Inst Robot & Intelligent Machines, Atlanta, GA 30332 USA
来源
2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) | 2017年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory optimization of a controlled dynamical system is an essential part of autonomy, however many trajectory optimization techniques are limited by the fidelity of the underlying parametric model. In the field of robotics, a lack of model knowledge can be overcome with machine learning techniques by utilizing measurements to build a dynamical model from the data. This paper aims to take the middle ground between these two approaches by introducing a semi-parametric representation of the underlying system dynamics. Our goal is to leverage the considerable information contained in a traditional physics based model and combine it with a data-driven, non-parametric regression technique known as a Gaussian Process. Integrating this semi-parametric model with PseudoSpectral Optimal Control (PSOC), we demonstrate model learning in an episodic and receding horizon fashion. In order to manage parametric uncertainty, we introduce an algorithm that utilizes Sparse Spectrum Gaussian Processes (SSGP) for incremental learning after each rollout. The goal of this paper is to motivate and demonstrate the constrained optimization techniques with semi-parametric models for online learning.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
  • [1] Online Simultaneous Semi-Parametric Dynamics Model Learning
    Smith, Joshua
    Mistry, Michael
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 2039 - 2046
  • [2] Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing
    Georgiev, Ignat
    Chatzikomis, Christoforos
    Volkl, Timo
    Smith, Joshua
    Mistry, Michael
    CONFERENCE ON ROBOT LEARNING, VOL 155, 2020, 155 : 552 - 563
  • [3] Semi-parametric modelling of correlation dynamics
    Hafner, CM
    van Dijk, D
    Franses, PH
    ECONOMETRIC ANALYSIS OF FINANCIAL AND ECONOMIC TIME SERIES, 2006, 20 : 59 - 103
  • [4] Empirical likelihood in a semi-parametric model
    Qin, J
    Wong, A
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (02) : 209 - 219
  • [5] On the efficiency of a semi-parametric GARCH model
    Di, Jianing
    Gangopadhyay, Ashis
    ECONOMETRICS JOURNAL, 2011, 14 (02): : 257 - 277
  • [6] Computation of predictive densities in the semi-parametric Bayesian Cox-Dirichlet model
    Gouget, N
    Raoult, JP
    JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 10 (04) : 307 - 341
  • [7] Semi-parametric real exchange rates dynamics
    Angelos Kanas
    Angelos Kotios
    Panagiotis D. Zervopoulos
    Review of Quantitative Finance and Accounting, 2019, 52 : 643 - 656
  • [8] Semi-parametric real exchange rates dynamics
    Kanas, Angelos
    Kotios, Angelos
    Zervopoulos, Panagiotis D.
    REVIEW OF QUANTITATIVE FINANCE AND ACCOUNTING, 2019, 52 (02) : 643 - 656
  • [9] Semi-parametric adjustment model methods for positioning of seafloor control point
    Sun W.
    Yin X.
    Bao J.
    Zeng A.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (01): : 117 - 123
  • [10] Evaluation of a Semi-Parametric Model for High-Dimensional FES Control
    Schearer, Eric M.
    Liao, Yu-Wei
    Perreault, Eric J.
    Tresch, Matthew C.
    Memberg, William D.
    Kirsch, Robert F.
    Lynch, Kevin M.
    2015 7TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2015, : 304 - 307