Complete intersection Calabi-Yau manifolds with respect to homogeneous vector bundles on Grassmannians

被引:7
作者
Inoue, Daisuke [1 ]
Ito, Atsushi [2 ]
Miura, Makoto [3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 6068502, Japan
[3] Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South Korea
关键词
VARIETIES;
D O I
10.1007/s00209-018-2163-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the method by Kuchle (Math Z 218(4), 563-575, 1995), we give a procedure to list up all complete intersection Calabi-Yau manifolds with respect to direct sums of irreducible homogeneous vector bundles on Grassmannians for each dimension. In particular, we give a classification of such Calabi-Yau 3-folds and determine their topological invariants. We also give alternative descriptions for some of them.
引用
收藏
页码:677 / 703
页数:27
相关论文
共 28 条
[21]   Kuchle fivefolds of type c5 [J].
Kuznetsov, Alexander .
MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (3-4) :1245-1278
[22]  
Landsberg JM, 2004, ENCYCL MATH SCI, V132, P71
[23]   On Fano manifolds of Picard number one [J].
Manivel, Laurent .
MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (3-4) :1129-1135
[24]   Minuscule Schubert Varieties and Mirror Symmetry [J].
Miura, Makoto .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
[25]  
Mukai S., 1992, LONDON MATH SOC LECT, P264, DOI DOI 10.1017/CBO9780511662652.019
[26]  
Reid M., 1972, The complete intersection of two or more quadrics
[27]  
Tjotta E., 1997, THESIS
[28]  
[No title captured]