Complete intersection Calabi-Yau manifolds with respect to homogeneous vector bundles on Grassmannians

被引:7
作者
Inoue, Daisuke [1 ]
Ito, Atsushi [2 ]
Miura, Makoto [3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 6068502, Japan
[3] Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South Korea
关键词
VARIETIES;
D O I
10.1007/s00209-018-2163-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the method by Kuchle (Math Z 218(4), 563-575, 1995), we give a procedure to list up all complete intersection Calabi-Yau manifolds with respect to direct sums of irreducible homogeneous vector bundles on Grassmannians for each dimension. In particular, we give a classification of such Calabi-Yau 3-folds and determine their topological invariants. We also give alternative descriptions for some of them.
引用
收藏
页码:677 / 703
页数:27
相关论文
共 28 条
[1]  
Andreev E. M., 1967, FUNKT ANAL PRIL, V1, P3
[2]  
[Anonymous], 1992, London Math. Soc. Lecture Note Ser.
[3]   Manifolds of low dimension with trivial canonical bundle in Grassmannians [J].
Benedetti, Vladimiro .
MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) :251-287
[4]   HOMOGENEOUS VECTOR-BUNDLES AND FAMILIES OF CALABI-YAU THREEFOLDS [J].
BORCEA, C .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (02) :395-415
[5]  
Casagrande C, 2015, MATH Z, V280, P981, DOI 10.1007/s00209-015-1458-z
[6]   Quantum periods for 3-dimensional Fano manifolds [J].
Coates, Tom ;
Corti, Alessio ;
Galkin, Sergey ;
Kasprzyk, Alexander .
GEOMETRY & TOPOLOGY, 2016, 20 (01) :103-256
[7]   Flexibility of Schubert classes [J].
Coskun, Izzet ;
Robles, Colleen .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (06) :759-774
[8]  
Cox David A., 1999, MATH SURVEYS MONOGRA, V68
[9]  
Ellingsrud G., 1987, LECT NOTES MATH, P84, DOI [10.1007/BFb0078179, DOI 10.1007/BFB0078179]
[10]  
Galkin S., EXPLICIT CONST UNPUB