Linear quadratic Nash games on positive linear systems

被引:2
作者
Azevedo-Perdicoúlis, TP
Jank, G
机构
[1] UTAD, ISR Polo Coimbra, Dept Matemat, P-5000591 Vila Real, Portugal
[2] Rhein Westfal TH Aachen, ISR Polo Coimbra, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
algebraic Riccati equations; generalized algebraic Riccati equations; linear quadratic games; Nash games; Newton method;
D O I
10.3166/ejc.11.632-644
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper two-player Nash differential games, on an infinite time horizon, with two different information structures have been considered: the open loop and the deterministic feedback information structure. The performance indices were assumed to be of quadratic hype and the constraint to be a linear positive differential system. As the main result, a convergent Newtonian algorithm to solve the associated algebraic matrix Riccati equation and generalized algebraic matrix Riccati equation in order to obtain stabilizing solutions which are directly related to the existence of a Nash equilibrium, is presented for each information structure. Finally, we discuss a numerical example to illustrate both algorithms presented.
引用
收藏
页码:632 / 644
页数:13
相关论文
共 25 条
[1]   NECESSARY CONDITIONS FOR CONSTANT SOLUTIONS OF COUPLED RICCATI-EQUATIONS IN NASH GAMES [J].
ABOUKANDIL, H ;
FREILING, G ;
JANK, G .
SYSTEMS & CONTROL LETTERS, 1993, 21 (04) :295-306
[2]  
Aboul-Enein H. Y, 2003, SYS CON FDN
[3]  
BASAR T, 1995, DYNAMIC NONCOOPERATI, P231
[4]  
Berman A., 1987, NONNEGATIVE MATRICES
[5]  
Berman A., 1989, NONNEGATIVE MATRICES
[6]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[7]   On the open-loop Nash equilibrium in LQ-games [J].
Engwerda, JC .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1998, 22 (05) :729-762
[8]   Solving the scalar feedback Nash algebraic Riccati equations: An eigenvector approach [J].
Engwerda, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (05) :847-852
[9]  
ENGWERDA JC, 2004, P MTNS 2004 KATH U L
[10]  
FARINA L, 2000, PUR AP M-WI, P3