SPATIAL PARITY VIOLATION AND THE TURBULENT MAGNETIC PRANDTL NUMBER

被引:1
作者
Jurcisinova, E. [1 ]
Jurcisin, M. [1 ]
Remecky, R. [1 ,2 ]
Zalom, P. [1 ]
机构
[1] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia
[2] Joint Inst Nucl Res, Dubna, Moscow Oblast, Russia
关键词
developed turbulence; passive advection; helicity; renormalization group; RENORMALIZATION-GROUP;
D O I
10.1007/s11232-013-0084-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the field theory renormalization-group technique in the two-loop approximation, we study the influence of helicity (spatial parity violation) on the turbulent magnetic Prandtl number in the model of kinematic magnetohydrodynamic turbulence, where the magnetic field behaves as a passive vector quantity advected by the helical turbulent environment given by the stochastic Navier-Stokes equation. We show that the presence of helicity decreases the value of the turbulent magnetic Prandtl number and that the two-loop helical contribution to the turbulent magnetic Prandtl number is up to 4.2% of its nonhelical value. This result demonstrates the strong stability of the properties of diffusion processes of the magnetic field in turbulent environments with spatial parity violation compared with the corresponding systems without the helicity.
引用
收藏
页码:956 / 963
页数:8
相关论文
共 18 条
[1]  
Adzhemyan L.T., 1999, Field Theoretic Renormalization Group in Fully Developed Turbulence
[2]   Two-loop calculation of the turbulent Prandtl number [J].
Adzhemyan, LT ;
Honkonen, J ;
Kim, TL ;
Sladkoff, L .
PHYSICAL REVIEW E, 2005, 71 (05)
[3]   Renormalization-group approach to the stochastic Navier-Stokes equation: Two-loop approximation [J].
Adzhemyan, LT ;
Antonov, NV ;
Kompaniets, MV ;
Vasil'ev, AN .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (10) :2137-2170
[4]   Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection [J].
Antonov, N. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (25) :7825-7865
[5]   Anisotropy in turbulent flows and in turbulent transport [J].
Biferale, L ;
Procaccia, I .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 414 (2-3) :43-164
[6]  
Biskamp D., 2003, Magnetohydrodynamic turbulence
[7]   Turbulent Prandtl number in neutrally buoyant turbulent round jet [J].
Chang, KA ;
Cowen, EA .
JOURNAL OF ENGINEERING MECHANICS, 2002, 128 (10) :1082-1087
[8]   TURBULENT PRANDTL NUMBER IN A CIRCULAR JET [J].
CHUA, LP ;
ANTONIA, RA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1990, 33 (02) :331-339
[9]   Particles and fields in fluid turbulence [J].
Falkovich, G ;
Gawedzki, K ;
Vergassola, M .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :913-975
[10]  
Hnatich M., 2001, Magnetohydrodynamics, V37, P80