On second grade fluids with vanishing viscosity

被引:58
作者
Busuioc, V [1 ]
机构
[1] Univ Paris 06, F-75252 Paris 05, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 328卷 / 12期
关键词
D O I
10.1016/S0764-4442(99)80447-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider in R-n (n = 2, 3) the equation of a second grade fluid with vanishing viscosity, also known as Camassa-Holm equation. We prove local existence and uniqueness of solutions for smooth initial data. We also give a blow-up condition which implies that the solution is global for n = 2. Finally, we prove the convergence of the solutions of second grade fluid equation to the solution of the Camassa-Holm equation as the viscosity tends to zero. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1241 / 1246
页数:6
相关论文
共 12 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]  
CHEMIN JY, 1998, ASTERISQUE, V230
[4]   Weak and classical solutions of a family of second grade fluids [J].
Cioranescu, D ;
Girault, V .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1997, 32 (02) :317-335
[5]  
CIORANESCU D, 1982, NONLINEAR PARTIAL DI, V6, P178
[6]   THERMODYNAMICS, STABILITY, AND BOUNDEDNESS OF FLUIDS OF COMPLEXITY-2 AND FLUIDS OF SECOND GRADE [J].
DUNN, JE ;
FOSDICK, RL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1974, 56 (03) :191-252
[7]  
FOSDICK RL, 1979, ARCH RATION MECH AN, V70, P145, DOI 10.1007/BF00250351
[8]   Euler-Poincare models of ideal fluids with nonlinear dispersion [J].
Holm, DD ;
Marsden, JE ;
Ratiu, TS .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4173-4176
[9]   SINGULAR LIMITS OF QUASILINEAR HYPERBOLIC SYSTEMS WITH LARGE PARAMETERS AND THE INCOMPRESSIBLE LIMIT OF COMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :481-524
[10]  
NOLL W, 1965, HDB PHYSICS, V3