Bidirectional Attention-Recognition Model for Fine-Grained Object Classification

被引:39
作者
Liu, Chuanbin [1 ]
Xie, Hongtao [1 ]
Zha, Zhengjun [1 ]
Yu, Lingyun [1 ]
Chen, Zhineng [2 ]
Zhang, Yongdong [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
关键词
Fine-grained object classification; interpretable machine learning; visual attention; pattern recognition; data augmentation;
D O I
10.1109/TMM.2019.2954747
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fine-grained object classification (FGOC) is a challenging research topic in multimedia computing with machine learning, which faces two pivotal conundrums: focusing attention on the discriminate part regions, and then processing recognition with the part-based features. Existing approaches generally adopt a unidirectional two-step structure, that first locate the discriminate parts and then recognize the part-based features. However, they neglect the truth that part localization and feature recognition can be reinforced in a bidirectional process. In this paper, we propose a novel bidirectional attention-recognition model (BARM) to actualize the bidirectional reinforcement for FGOC. The proposed BARM consists of one attention agent for discriminate part regions proposing and one recognition agent for feature extraction and recognition. Meanwhile, a feedback flow is creatively established to optimize the attention agent directly by recognition agent. Therefore, in BARM the attention agent and the recognition agent can reinforce each other in a bidirectional way and the overall framework can be trained end-to-end without neither object nor parts annotations. Moreover, a novel Multiple Random Erasing data augmentation is proposed, and it exhibits impressive pertinency and superiority for FGOC. Conducted on several extensive FGOC benchmarks, BARM outperforms the present state-of-the-art methods in classification accuracy. Furthermore, BARM exhibits a clear interpretability and keeps consistent with the human perception in visualization experiments.
引用
收藏
页码:1785 / 1795
页数:11
相关论文
共 67 条
[1]  
[Anonymous], 2018, arXiv
[2]  
[Anonymous], 2019, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
[3]  
[Anonymous], IEEE T PATTERN ANAL
[4]  
[Anonymous], MULTIMEDIA
[5]  
[Anonymous], 2007, Proceedings of the 15th ACM international conference on Multimedia
[6]  
[Anonymous], 2017, ARXIV
[7]  
[Anonymous], 2012, PROC CVPR IEEE
[8]  
[Anonymous], IEEE T PATTERN ANAL
[9]  
Branson Steve, 2014, Bird species categorization using pose normalized deep convolutional nets
[10]  
Cao Z., 2007, P 24 INT C MACH LEAR, P129