Hybrid passivated colloidal quantum dot solids

被引:1
作者
Ip, Alexander H. [1 ]
Thon, Susanna M. [1 ]
Hoogland, Sjoerd [1 ]
Voznyy, Oleksandr [1 ]
Zhitomirsky, David [1 ]
Debnath, Ratan [1 ]
Levina, Larissa [1 ]
Rollny, Lisa R. [1 ]
Carey, Graham H. [1 ]
Fischer, Armin [1 ]
Kemp, Kyle W. [1 ]
Kramer, Illan J. [1 ]
Ning, Zhijun [1 ]
Labelle, Andre J. [1 ]
Chou, Kang Wei [2 ]
Amassian, Aram [2 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
SENSITIZED SOLAR-CELLS; ELECTRICAL-PROPERTIES; NANOCRYSTAL FILMS; CDSE NANOCRYSTALS; PHOTOVOLTAICS; RECOMBINATION; EFFICIENCY; STABILITY; LIGANDS; LAYER;
D O I
10.1038/NNANO.2012.127
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect(1-6). However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance(7). Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions(8-12), leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states(13,14). Furthermore, the solution-based approach leverages recent progress in metal: chalcogen chemistry in the liquid phase(15-19). Here, we quantify the density of midgap trap states(20-22) in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [41] Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics
    Barkhouse, D. Aaron R.
    Debnath, Ratan
    Kramer, Illan J.
    Zhitomirsky, David
    Pattantyus-Abraham, Andras G.
    Levina, Larissa
    Etgar, Lioz
    Graetzel, Michael
    Sargent, Edward H.
    ADVANCED MATERIALS, 2011, 23 (28) : 3134 - +
  • [42] Enhanced Mobility-Lifetime Products in PbS Colloidal Quantum Dot Photovoltaics
    Jeong, Kwang S.
    Tang, Jiang
    Liu, Huan
    Kim, Jihye
    Schaefer, Andrew W.
    Kemp, Kyle
    Levina, Larissa
    Wang, Xihua
    Hoogland, Sjoerd
    Debnath, Ratan
    Brzozowski, Lukasz
    Sargent, Edward H.
    Asbury, John B.
    ACS NANO, 2012, 6 (01) : 89 - 99
  • [43] Colloidal Quantum Dot Solar Cells
    Carey, Graham H.
    Abdelhady, Ahmed L.
    Ning, Zhijun
    Thon, Susanna M.
    Bakr, Osman M.
    Sargent, Edward H.
    CHEMICAL REVIEWS, 2015, 115 (23) : 12732 - 12763
  • [44] Colloidal quantum dot solar cells
    Sargent, Edward H.
    NATURE PHOTONICS, 2012, 6 (03) : 133 - 135
  • [45] Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids
    Heo, Seung Jin
    Yoon, Seokhyun
    Oh, Sang Hoon
    Yoon, Doo Hyun
    Kim, Hyun Jae
    NANOSCALE, 2014, 6 (02) : 903 - 907
  • [46] Suppression of Thermally Induced Surface Traps in Colloidal Quantum Dot Solids via Ultrafast Pulsed Light
    Lee, Eon Ji
    Lee, Wonjong
    Yun, Tae Ho
    You, Hyung Ryul
    Kim, Hae Jeong
    Yu, Han Na
    Kim, Soo-Kwan
    Kim, Younghoon
    Ahn, Hyungju
    Lim, Jongchul
    Yim, Changyong
    Choi, Jongmin
    SMALL, 2024, 20 (36)
  • [47] Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells
    Kim, Younghoon
    Bicanic, Kristopher
    Tan, Hairen
    Ouellette, Olivier
    Sutherland, Brandon R.
    de Arguer, F. Pelayo Garcia
    Jo, Jea Woong
    Liu, Mengxia
    Sun, Bin
    Liu, Min
    Hoogland, Sjoerd
    Sargent, Edward H.
    NANO LETTERS, 2017, 17 (04) : 2349 - 2353
  • [48] Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells
    Neo, Darren C. J.
    Stranks, Samuel D.
    Eperon, Giles E.
    Snaith, Henry J.
    Assender, Hazel E.
    Watt, Andrew A. R.
    APPLIED PHYSICS LETTERS, 2015, 107 (10)
  • [49] PbS quantum dot solids and quantum dot size gradient layers for photovoltaics
    Zvaigzne, M.
    Aleksandrov, A.
    Goltyapin, Y.
    Nikitenko, V
    Chistyakov, A.
    Tameev, A.
    OPTOELECTRONIC DEVICES AND INTEGRATION VII, 2018, 10814
  • [50] Photoconductivity of PbSe Quantum-Dot Solids: Dependence on Ligand Anchor Group and Length
    Gao, Yunan
    Aerts, Michiel
    Sandeep, C. S. Suchand
    Talgorn, Elise
    Savenije, Tom J.
    Kinge, Sachin
    Siebbeles, Laurens D. A.
    Houtepen, Arjan J.
    ACS NANO, 2012, 6 (11) : 9606 - 9614