Hybrid passivated colloidal quantum dot solids

被引:1
作者
Ip, Alexander H. [1 ]
Thon, Susanna M. [1 ]
Hoogland, Sjoerd [1 ]
Voznyy, Oleksandr [1 ]
Zhitomirsky, David [1 ]
Debnath, Ratan [1 ]
Levina, Larissa [1 ]
Rollny, Lisa R. [1 ]
Carey, Graham H. [1 ]
Fischer, Armin [1 ]
Kemp, Kyle W. [1 ]
Kramer, Illan J. [1 ]
Ning, Zhijun [1 ]
Labelle, Andre J. [1 ]
Chou, Kang Wei [2 ]
Amassian, Aram [2 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
SENSITIZED SOLAR-CELLS; ELECTRICAL-PROPERTIES; NANOCRYSTAL FILMS; CDSE NANOCRYSTALS; PHOTOVOLTAICS; RECOMBINATION; EFFICIENCY; STABILITY; LIGANDS; LAYER;
D O I
10.1038/NNANO.2012.127
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect(1-6). However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance(7). Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions(8-12), leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states(13,14). Furthermore, the solution-based approach leverages recent progress in metal: chalcogen chemistry in the liquid phase(15-19). Here, we quantify the density of midgap trap states(20-22) in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [21] A multifunctional fullerene interlayer in colloidal quantum dot-based hybrid solar cells
    Nam, Minwoo
    Park, Joongpill
    Lee, Keekeun
    Kim, Sang-Wook
    Ko, Hyungduk
    Han, Il Ki
    Ko, Doo-Hyun
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (19) : 10585 - 10591
  • [22] Spray Coated Colloidal Quantum Dot Films for Broadband Photodetectors
    Song, Kaixuan
    Yuan, Jifeng
    Shen, Ting
    Du, Jiuyao
    Guo, Ruiqi
    Pullerits, Toenu
    Tian, Jianjun
    NANOMATERIALS, 2019, 9 (12)
  • [23] Colloidal Quantum Dot Solar Cells Exploiting Hierarchical Structuring
    Labelle, Andre J.
    Thon, Susanna M.
    Masala, Silvia
    Adachi, Michael M.
    Dong, Haopeng
    Farahani, Maryam
    Ip, Alexander H.
    Fratalocchi, Andrea
    Sargent, Edward H.
    NANO LETTERS, 2015, 15 (02) : 1101 - 1108
  • [24] Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids
    Jo, Jea Woong
    Choi, Jongmin
    de Arquer, F. Pelayo Garcia
    Seifitokaldani, Ali
    Sun, Bin
    Kim, Younghoon
    Ahn, Hyungju
    Fan, James
    Quintero-Bermudez, Rafael
    Kim, Junghwan
    Choi, Min-Jae
    Baek, Se-Woong
    Proppe, Andrew H.
    Walters, Grant
    Nam, Dae-Hyun
    Kelley, Shana
    Hoogland, Sjoerd
    Voznyy, Oleksandr
    Sargent, Edward H.
    NANO LETTERS, 2018, 18 (07) : 4417 - 4423
  • [25] Synergistic Doping of Fullerene Electron Transport Layer and Colloidal Quantum Dot Solids Enhances Solar Cell Performance
    Yuan, Mingjian
    Voznyy, Oleksandr
    Zhitomirsky, David
    Kanjanaboos, Pongsakorn
    Sargent, Edward H.
    ADVANCED MATERIALS, 2015, 27 (05) : 917 - 921
  • [26] Inverted Colloidal Quantum Dot Solar Cells
    Kim, Gi-Hwan
    Walker, Bright
    Kim, Hak-Beom
    Kim, Jin Young
    Sargent, Edward H.
    Park, Jongnam
    Kim, Jin Young
    ADVANCED MATERIALS, 2014, 26 (20) : 3321 - +
  • [27] Colloidal quantum dot materials for infrared optoelectronics
    Arinze, Ebuka S.
    Nyirjesy, Gabrielle
    Cheng, Yan
    Palmquist, Nathan
    Thon, Susanna M.
    INFRARED REMOTE SENSING AND INSTRUMENTATION XXIII, 2015, 9608
  • [28] Colloidal Quantum Dot Photovoltaics: A Path Forward
    Kramer, Illan J.
    Sargent, Edward H.
    ACS NANO, 2011, 5 (11) : 8506 - 8514
  • [29] Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime
    Zhitomirsky, David
    Voznyy, Oleksandr
    Levina, Larissa
    Hoogland, Sjoerd
    Kemp, Kyle W.
    Ip, Alexander H.
    Thon, Susanna M.
    Sargent, Edward H.
    NATURE COMMUNICATIONS, 2014, 5
  • [30] Electrical Transport in Colloidal Quantum Dot Films
    Guyot-Sionnest, Philippe
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (09): : 1169 - 1175