Hybrid passivated colloidal quantum dot solids

被引:1
作者
Ip, Alexander H. [1 ]
Thon, Susanna M. [1 ]
Hoogland, Sjoerd [1 ]
Voznyy, Oleksandr [1 ]
Zhitomirsky, David [1 ]
Debnath, Ratan [1 ]
Levina, Larissa [1 ]
Rollny, Lisa R. [1 ]
Carey, Graham H. [1 ]
Fischer, Armin [1 ]
Kemp, Kyle W. [1 ]
Kramer, Illan J. [1 ]
Ning, Zhijun [1 ]
Labelle, Andre J. [1 ]
Chou, Kang Wei [2 ]
Amassian, Aram [2 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
SENSITIZED SOLAR-CELLS; ELECTRICAL-PROPERTIES; NANOCRYSTAL FILMS; CDSE NANOCRYSTALS; PHOTOVOLTAICS; RECOMBINATION; EFFICIENCY; STABILITY; LIGANDS; LAYER;
D O I
10.1038/NNANO.2012.127
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect(1-6). However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance(7). Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions(8-12), leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states(13,14). Furthermore, the solution-based approach leverages recent progress in metal: chalcogen chemistry in the liquid phase(15-19). Here, we quantify the density of midgap trap states(20-22) in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [1] Electronically Active Impurities in Colloidal Quantum Dot Solids
    Carey, Graham H.
    Kramer, Illan J.
    Kanjanaboos, Pongsakorn
    Moreno-Bautista, Gabriel
    Voznyy, Oleksandr
    Rollny, Lisa
    Tang, Joel A.
    Hoogland, Sjoerd
    Sargent, Edward H.
    ACS NANO, 2014, 8 (11) : 11763 - 11769
  • [2] Role of Bond Adaptability in the Passivation of Colloidal Quantum Dot Solids
    Thon, Susanna M.
    Ip, Alexander H.
    Voznyy, Oleksandr
    Levina, Larissa
    Kemp, Kyle W.
    Carey, Graham H.
    Masala, Silvia
    Sargent, Edward H.
    ACS NANO, 2013, 7 (09) : 7680 - 7688
  • [3] Colloidal Quantum Dot Photovoltaics
    Thon, Susanna M.
    Sargent, Edward H.
    THIN FILM SOLAR TECHNOLOGY III, 2011, 8110
  • [4] Colloidal quantum dot solids for solution-processed solar cells
    Yuan, Mingjian
    Liu, Mengxia
    Sargent, Edward H.
    NATURE ENERGY, 2016, 1
  • [5] Conformal Fabrication of Colloidal Quantum Dot Solids for Optically Enhanced Photovoltaics
    Labelle, Andre J.
    Thon, Susanna M.
    Kim, Jin Young
    Lan, Xinzheng
    Zhitomirsky, David
    Kemp, Kyle W.
    Sargent, Edward H.
    ACS NANO, 2015, 9 (05) : 5447 - 5453
  • [6] Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids
    Zhitomirsky, David
    Voznyy, Oleksandr
    Hoogland, Sjoerd
    Sargent, Edward H.
    ACS NANO, 2013, 7 (06) : 5282 - 5290
  • [7] Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids
    Liu, Mengxia
    Voznyy, Oleksandr
    Sabatini, Randy
    de Arquer, F. Pelayo Garcia
    Munir, Rahim
    Balawi, Ahmed Hesham
    Lan, Xinzheng
    Fan, Fengjia
    Walters, Grant
    Kirmani, Ahmad R.
    Hoogland, Sjoerd
    Laquai, Frederic
    Amassian, Aram
    Sargent, Edward H.
    NATURE MATERIALS, 2017, 16 (02) : 258 - 263
  • [8] SOLAR CELLS BASED ON COLLOIDAL QUANTUM DOT SOLIDS: SEEKING ENHANCED PHOTOCURRENT
    Law, Matt
    Luther, Joseph M.
    Beard, Matthew C.
    Choi, Sukgeun
    Nozik, Arthur J.
    2009 34TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-3, 2009, : 2280 - 2285
  • [9] Strategies for the Controlled Electronic Doping of Colloidal Quantum Dot Solids
    Stavrinadis, Alexandros
    Konstantatos, Gerasimos
    CHEMPHYSCHEM, 2016, 17 (05) : 632 - 644
  • [10] Mediating Colloidal Quantum Dot/Organic Semiconductor Interfaces for Efficient Hybrid Solar Cells
    Kim, Byeongsu
    Baek, Se-Woong
    Kim, Changjo
    Kim, Junho
    Lee, Jung-Yong
    ADVANCED ENERGY MATERIALS, 2022, 12 (02)